Nuclear matter distributions in the neutron-rich carbon isotopes $^{14-17}$C from intermediate-energy proton elastic scattering in inverse kinematics


الملخص بالإنكليزية

The absolute differential cross sections for small-angle proton elastic scattering off the nuclei $^{12,14-17}$C have been measured in inverse kinematics at energies near 700 MeV/u at GSI Darmstadt. The hydrogen-filled ionization chamber IKAR served simultaneously as a gas target and a detector for the recoil protons. The projectile scattering angles were measured with multi-wire tracking detectors. The radial nuclear matter density distributions and the root-mean-square nuclear matter radii were deduced from the measured cross sections using the Glauber multiple-scattering theory. A possible neutron halo structure in $^{15}$C, $^{16}$C and $^{17}$C is discussed. The obtained data show evidence for a halo structure in the $^{15}$C nucleus.

تحميل البحث