ترغب بنشر مسار تعليمي؟ اضغط هنا

Probability Trajectory: One New Movement Description for Trajectory Prediction

87   0   0.0 ( 0 )
 نشر من قبل Pei Lv
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Trajectory prediction is a fundamental and challenging task for numerous applications, such as autonomous driving and intelligent robots. Currently, most of existing work treat the pedestrian trajectory as a series of fixed two-dimensional coordinates. However, in real scenarios, the trajectory often exhibits randomness, and has its own probability distribution. Inspired by this observed fact, also considering other movement characteristics of pedestrians, we propose one simple and intuitive movement description, probability trajectory, which maps the coordinate points of pedestrian trajectory into two-dimensional Gaussian distribution in images. Based on this unique description, we develop one novel trajectory prediction method, called social probability. The method combines the new probability trajectory and powerful convolution recurrent neural networks together. Both the input and output of our method are probability trajectories, which provide the recurrent neural network with sufficient spatial and random information of moving pedestrians. And the social probability extracts spatio-temporal features directly on the new movement description to generate robust and accurate predicted results. The experiments on public benchmark datasets show the effectiveness of the proposed method.



قيم البحث

اقرأ أيضاً

76 - Hang Zhao , Jiyang Gao , Tian Lan 2020
Predicting the future behavior of moving agents is essential for real world applications. It is challenging as the intent of the agent and the corresponding behavior is unknown and intrinsically multimodal. Our key insight is that for prediction with in a moderate time horizon, the future modes can be effectively captured by a set of target states. This leads to our target-driven trajectory prediction (TNT) framework. TNT has three stages which are trained end-to-end. It first predicts an agents potential target states $T$ steps into the future, by encoding its interactions with the environment and the other agents. TNT then generates trajectory state sequences conditioned on targets. A final stage estimates trajectory likelihoods and a final compact set of trajectory predictions is selected. This is in contrast to previous work which models agent intents as latent variables, and relies on test-time sampling to generate diverse trajectories. We benchmark TNT on trajectory prediction of vehicles and pedestrians, where we outperform state-of-the-art on Argoverse Forecasting, INTERACTION, Stanford Drone and an in-house Pedestrian-at-Intersection dataset.
Making accurate motion prediction of the surrounding traffic agents such as pedestrians, vehicles, and cyclists is crucial for autonomous driving. Recent data-driven motion prediction methods have attempted to learn to directly regress the exact futu re position or its distribution from massive amount of trajectory data. However, it remains difficult for these methods to provide multimodal predictions as well as integrate physical constraints such as traffic rules and movable areas. In this work we propose a novel two-stage motion prediction framework, Trajectory Proposal Network (TPNet). TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals which meets the physical constraints. By steering the proposal generation process, safe and multimodal predictions are realized. Thus this framework effectively mitigates the complexity of motion prediction problem while ensuring the multimodal output. Experiments on four large-scale trajectory prediction datasets, i.e. the ETH, UCY, Apollo and Argoverse datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
It is essential but challenging to predict future trajectories of various agents in complex scenes. Whether it is internal personality factors of agents, interactive behavior of the neighborhood, or the influence of surroundings, it will have an impa ct on their future behavior styles. It means that even for the same physical type of agents, there are huge differences in their behavior preferences. Although recent works have made significant progress in studying agents multi-modal plannings, most of them still apply the same prediction strategy to all agents, which makes them difficult to fully show the multiple styles of vast agents. In this paper, we propose the Multi-Style Network (MSN) to focus on this problem by divide agents preference styles into several hidden behavior categories adaptively and train each categorys prediction network separately, therefore giving agents all styles of predictions simultaneously. Experiments demonstrate that our deterministic MSN-D and generative MSN-G outperform many recent state-of-the-art methods and show better multi-style characteristics in the visualized results.
We propose to predict the future trajectories of observed agents (e.g., pedestrians or vehicles) by estimating and using their goals at multiple time scales. We argue that the goal of a moving agent may change over time, and modeling goals continuous ly provides more accurate and detailed information for future trajectory estimation. In this paper, we present a novel recurrent network for trajectory prediction, called Stepwise Goal-Driven Network (SGNet). Unlike prior work that models only a single, long-term goal, SGNet estimates and uses goals at multiple temporal scales. In particular, the framework incorporates an encoder module that captures historical information, a stepwise goal estimator that predicts successive goals into the future, and a decoder module that predicts future trajectory. We evaluate our model on three first-person traffic datasets (HEV-I, JAAD, and PIE) as well as on two birds eye view datasets (ETH and UCY), and show that our model outperforms the state-of-the-art methods in terms of both average and final displacement errors on all datasets. Code has been made available at: https://github.com/ChuhuaW/SGNet.pytorch.
We propose a robust solution to future trajectory forecast, which can be practically applicable to autonomous agents in highly crowded environments. For this, three aspects are particularly addressed in this paper. First, we use composite fields to p redict future locations of all road agents in a single-shot, which results in a constant time complexity, regardless of the number of agents in the scene. Second, interactions between agents are modeled as a non-local response, enabling spatial relationships between different locations to be captured temporally as well (i.e., in spatio-temporal interactions). Third, the semantic context of the scene are modeled and take into account the environmental constraints that potentially influence the future motion. To this end, we validate the robustness of the proposed approach using the ETH, UCY, and SDD datasets and highlight its practical functionality compared to the current state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا