ﻻ يوجد ملخص باللغة العربية
We present MeerKAT neutral hydrogen (HI) observations of the Fornax A group, that is likely falling into the Fornax cluster for the first time. Our HI image is sensitive to 1.4 x 10$^{19}$ cm$^{-2}$ over 44.1 km s$^{-1}$, where we detect HI in 10 galaxies and a total of 1.12 x 10$^{9}$ Msol of HI in the intra-group medium (IGM). We search for signs of pre-processing in the 12 group galaxies with confirmed optical redshifts that reside within our HI image. There are 9 galaxies that show evidence of pre-processing and we classify the pre-processing status of each galaxy, according to their HI morphology and gas (atomic and molecular) scaling relations. Galaxies yet to experience pre-processing have extended HI disks, a high HI content with a H$_2$-to-HI ratio an order of magnitude lower than the median for their stellar mass. Galaxies currently being pre-processed display HI tails, truncated HI disks with typical gas ratios. Galaxies in the advanced stages of pre-processing are HI deficient. If there is any HI, they have lost their outer HI disk and efficiently converted their HI to H$_2$, resulting in H$_2$-to-HI ratios an order of magnitude higher than the median for their stellar mass. The central, massive galaxy in our group underwent a 10:1 merger 2 Gyr ago, and ejected 6.6 - 11.2 x 10$^{8}$ Msol of HI that we detect as clouds and streams in the IGM, some forming coherent structures up to 220 kpc in length. We also detect giant (100 kpc) ionised hydrogen (H$alpha$) filaments in the IGM, likely from cool gas being removed (and ionised) from an infalling satellite. The H$alpha$ filaments are situated within the hot halo of NGC 1316 and some regions contain HI. We speculate that the H$alpha$ and multiphase gas is supported by magnetic pressure (possibly assisted by the AGN), such that the hot gas can condense and form HI that survives in the hot halo for cosmological timescales.
We present the science case and observations plan of the MeerKAT Fornax Survey, an HI and radio continuum survey of the Fornax galaxy cluster to be carried out with the SKA precursor MeerKAT. Fornax is the second most massive cluster within 20 Mpc an
Galaxies in clusters are more likely to be of early type and to have lower star formation rates than galaxies in the field. Recent observations and simulations suggest that cluster galaxies may be `pre-processed by group or filament environments and
We use a high-resolution cosmological dark matter-only simulation to study the orbital trajectories of haloes and subhaloes in the environs of isolated hosts. We carefully tally all apsis points and use them to distinguish haloes that are infalling f
Clues to the formation and evolution of Nuclear Star Clusters (NSCs) lie in their stellar populations. However, these structures are often very faint compared to their host galaxy, and spectroscopic analysis of NSCs is hampered by contamination of li
We investigate the structural properties of cluster and group galaxies by studying the Fornax main cluster and the infalling Fornax A group, exploring the effects of galaxy preprocessing in this showcase example. Additionally, we compare the structur