ﻻ يوجد ملخص باللغة العربية
The CASCADE3 Monte Carlo event generator based on Transverse Momentum Dependent (TMD) parton densities is described. Hard processes which are generated in collinear factorization with LO multileg or NLO parton level generators are extended by adding transverse momenta to the initial partons according to TMD densities and applying dedicated TMD parton showers and hadronization. Processes with off-shell kinematics within $k_t$-factorization, either internally implemented or from external packages via LHE files, can be processed for parton showering and hadronization. The initial state parton shower is tied to the TMD parton distribution, with all parameters fixed by the TMD distribution.
We discuss prospects for Monte Carlo event generators incorporating the dynamics of transverse momentum dependent (TMD) parton distribution functions. We illustrate TMD evolution in the parton branching formalism, and present Monte Carlo applications of the method.
We present a new strategy using artificial intelligence (AI) to build the first AI-based Monte Carlo event generator (MCEG) capable of faithfully generating final state particle phase space in lepton-hadron scattering. We show a blueprint for integra
We review the main software and computing challenges for the Monte Carlo physics event generators used by the LHC experiments, in view of the High-Luminosity LHC (HL-LHC) physics programme. This paper has been prepared by the HEP Software Foundation
PHANTOM is a tree level Monte Carlo for six parton final states at proton--proton, proton--antiproton and electron--positron collider at O(alpha_ew^6) and O(alpha_ew^4*alpha_s^2) including possible interferences between the two sets of diagrams. This
The Monte Carlo program {tt WWGENPV}, designed for computing distributions and generating events for four-fermion production in $e^+ e^- $ collisions, is described. The new version, 2.0, includes the full set of the electroweak (EW) tree-level matrix