ﻻ يوجد ملخص باللغة العربية
There has been an increasing consensus in learning based face anti-spoofing that the divergence in terms of camera models is causing a large domain gap in real application scenarios. We describe a framework that eliminates the influence of inherent variance from acquisition cameras at the feature level, leading to the generalized face spoofing detection model that could be highly adaptive to different acquisition devices. In particular, the framework is composed of two branches. The first branch aims to learn the camera invariant spoofing features via feature level decomposition in the high frequency domain. Motivated by the fact that the spoofing features exist not only in the high frequency domain, in the second branch the discrimination capability of extracted spoofing features is further boosted from the enhanced image based on the recomposition of the high-frequency and low-frequency information. Finally, the classification results of the two branches are fused together by a weighting strategy. Experiments show that the proposed method can achieve better performance in both intra-dataset and cross-dataset settings, demonstrating the high generalization capability in various application scenarios.
Nowadays, the increasingly growing number of mobile and computing devices has led to a demand for safer user authentication systems. Face anti-spoofing is a measure towards this direction for bio-metric user authentication, and in particular face rec
Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on
Face anti-spoofing is designed to keep face recognition systems from recognizing fake faces as the genuine users. While advanced face anti-spoofing methods are developed, new types of spoof attacks are also being created and becoming a threat to all
Face anti-spoofing is crucial for the security of face recognition system, by avoiding invaded with presentation attack. Previous works have shown the effectiveness of using depth and temporal supervision for this task. However, depth supervision is
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios. Existing DG methods assume that the do-main label is known.However, in real-world applications, thecollected dataset