ترغب بنشر مسار تعليمي؟ اضغط هنا

Unitary Approximate Message Passing for Sparse Bayesian Learning

179   0   0.0 ( 0 )
 نشر من قبل Qinghua Guo
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sparse Bayesian learning (SBL) can be implemented with low complexity based on the approximate message passing (AMP) algorithm. However, it does not work well for a generic measurement matrix, which may cause AMP to diverge. Damped AMP has been used for SBL to alleviate the problem at the cost of reducing convergence speed. In this work, we propose a new SBL algorithm based on structured variational inference, leveraging AMP with a unitary transformation (UAMP). Both single measurement vector and multiple measurement vector problems are investigated. It is shown that, compared to state-of-the-art AMP-based SBL algorithms, the proposed UAMP-SBL is more robust and efficient, leading to remarkably better performance.



قيم البحث

اقرأ أيضاً

Compressed sensing (CS) deals with the problem of reconstructing a sparse vector from an under-determined set of observations. Approximate message passing (AMP) is a technique used in CS based on iterative thresholding and inspired by belief propagat ion in graphical models. Due to the high transmission rate and a high molecular absorption, spreading loss and reflection loss, the discrete-time channel impulse response (CIR) of a typical indoor THz channel is very long and exhibits an approximately sparse characteristic. In this paper, we develop AMP based channel estimation algorithms for indoor THz communications. The performance of these algorithms is compared to the state of the art. We apply AMP with soft- and hard-thresholding. Unlike the common applications in which AMP with hard-thresholding diverges, the properties of the THz channel favor this approach. It is shown that THz channel estimation via hard-thresholding AMP outperforms all previously proposed methods and approaches the oracle based performance closely.
Channel estimation and signal detection are very challenging for an orthogonal frequency division multiplexing (OFDM) system without cyclic prefix (CP). In this article, deep learning based on orthogonal approximate message passing (DL-OAMP) is used to address these problems. The DL-OAMP receiver includes a channel estimation neural network (CE-Net) and a signal detection neural network based on OAMP, called OAMP-Net. The CE-Net is initialized by the least square channel estimation algorithm and refined by minimum mean-squared error (MMSE) neural network. The OAMP-Net is established by unfolding the iterative OAMP algorithm and adding some trainable parameters to improve the detection performance. The DL-OAMP receiver is with low complexity and can estimate time-varying channels with only a single training. Simulation results demonstrate that the bit-error rate (BER) of the proposed scheme is lower than those of competitive algorithms for high-order modulation.
Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. However, AMP only applies to independent identically distributed (IID) transform mat rices, but may become unreliable for other matrix ensembles, especially for ill-conditioned ones. To handle this difficulty, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP requires high-complexity linear minimum mean square error estimator. To solve the disadvantages of AMP and OAMP/VAMP, this paper proposes a memory AMP (MAMP), in which a long-memory matched filter is proposed for interference suppression. The complexity of MAMP is comparable to AMP. The asymptotic Gaussianity of estimation errors in MAMP is guaranteed by the orthogonality principle. A state evolution is derived to asymptotically characterize the performance of MAMP. Based on the state evolution, the relaxation parameters and damping vector in MAMP are optimized. For all right-unitarily-invariant matrices, the optimized MAMP converges to OAMP/VAMP, and thus is Bayes-optimal if it has a unique fixed point. Finally, simulations are provided to verify the validity and accuracy of the theoretical results.
For certain sensing matrices, the Approximate Message Passing (AMP) algorithm efficiently reconstructs undersampled signals. However, in Magnetic Resonance Imaging (MRI), where Fourier coefficients of a natural image are sampled with variable density , AMP encounters convergence problems. In response we present an algorithm based on Orthogonal AMP constructed specifically for variable density partial Fourier sensing matrices. For the first time in this setting a state evolution has been observed. A practical advantage of state evolution is that Steins Unbiased Risk Estimate (SURE) can be effectively implemented, yielding an algorithm with no free parameters. We empirically evaluate the effectiveness of the parameter-free algorithm on simulated data and find that it converges over 5x faster and to a lower mean-squared error solution than Fast Iterative Shrinkage-Thresholding (FISTA).
The orthogonal-time-frequency-space (OTFS) modulation has emerged as a promising modulation scheme for high mobility wireless communications. To harvest the time and frequency diversity promised by OTFS, some promising detectors, especially message p assing based ones, have been developed by taking advantage of the sparsity of the channel in the delay-Doppler domain. However, when the number of channel paths is relatively large or fractional Doppler {shifts have} to be considered, the complexity of existing detectors is a concern, and the message passing based detectors may suffer from performance loss due to the short loops involved in message passing. In this work, we investigate the design of OTFS detectors based on the approximate message passing (AMP). In particular, {leveraging the unitary AMP (UAMP), we design new detectors that enjoy} the structure of the channel matrix and allow efficient implementation. In addition, the estimation of noise variance is incorporated into the UAMP-based detectors. Thanks to the robustness of UAMP relative to AMP, the UAMP-based detectors deliver superior performance, and outperform state-of-the-art detectors significantly. We also investigate iterative joint detection and decoding in a coded OTFS system, where the OTFS detectors are integrated into a powerful turbo receiver, leading to considerable performance gains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا