On relative metric mean dimension with potential and variational principles


الملخص بالإنكليزية

In this article, we introduce a notion of relative mean metric dimension with potential for a factor map $pi: (X,d, T)to (Y, S)$ between two topological dynamical systems. To link it with ergodic theory, we establish four variational principles in terms of metric entropy of partitions, Shapiras entropy, Katoks entropy and Brin-Katok local entropy respectively. Some results on local entropy with respect to a fixed open cover are obtained in the relative case. We also answer an open question raised by Shi cite{Shi} partially for a very well-partitionable compact metric space, and in general we obtain a variational inequality involving box dimension of the space. Corresponding inner variational principles given an invariant measure of $(Y,S)$ are also investigated.

تحميل البحث