ﻻ يوجد ملخص باللغة العربية
We present a proof of Chows theorem using two results of Errett Bishop retated to volumes and limits of analytic varieties. We think this approach suggested a long time ago in the beautiful book by Gabriel Stolzenberg, is very attractive and easier for students and newcomers to understand, also the theory presented here is linked to areas of mathematics that are not usually associated with Chows theorem. Furthermore, Bishops results imply both Chows and Remmert-Steins theorems directly, meaning that this approach is more economic and just as profound as Remmert-Steins proof. At the end of the paper there is a comparison table that explains how Bishops theorems generalize to several complex variables classical results of one complex variable.
We prove the following two results 1. For a proper holomorphic function $ f : X to D$ of a complex manifold $X$ on a disc such that ${df = 0 } subset f^{-1}(0)$, we construct, in a functorial way, for each integer $p$, a geometric (a,b)-module $E
A generalized Euler sequence over a complete normal variety X is the unique extension of the trivial bundle V otimes O_X by the sheaf of differentials Omega_X, given by the inclusion of a linear space V in Ext^1(O_X,Omega_X). For Lambda, a lattice of
Historically, Ehrenfests theorem (1927) is the first one which shows that classical physics can emerge from quantum physics as a kind of approximation. We recall the theorem in its original form. Next, we highlight its generalizations to the relativi
In 1947, M. S. Macphail constructed a series in $ell_{1}$ that converges unconditionally but does not converge absolutely. According to the literature, this result helped Dvoretzky and Rogers to finally answer a long standing problem of Banach Space
According to the Goldstone theorem a scalar theory with a spontaneously broken global symmetry contains strictly massless states. In this letter we identify a loophole in the current-algebra proof of the theorem. Therefore, the question whether in mo