ﻻ يوجد ملخص باللغة العربية
In this work we propose an approach for estimating 3D human poses of multiple people from a set of calibrated cameras. Estimating 3D human poses from multiple views has several compelling properties: human poses are estimated within a global coordinate space and multiple cameras provide an extended field of view which helps in resolving ambiguities, occlusions and motion blur. Our approach builds upon a real-time 2D multi-person pose estimation system and greedily solves the association problem between multiple views. We utilize bipartite matching to track multiple people over multiple frames. This proofs to be especially efficient as problems associated with greedy matching such as occlusion can be easily resolved in 3D. Our approach achieves state-of-the-art results on popular benchmarks and may serve as a baseline for future work.
Recently, huge strides were made in monocular and multi-view pose estimation with known camera parameters, whereas pose estimation from multiple cameras with unknown positions and orientations received much less attention. In this paper, we show how
This paper addresses the problem of 3D pose estimation for multiple people in a few calibrated camera views. The main challenge of this problem is to find the cross-view correspondences among noisy and incomplete 2D pose predictions. Most previous me
We propose a simple yet reliable bottom-up approach with a good trade-off between accuracy and efficiency for the problem of multi-person pose estimation. Given an image, we employ an Hourglass Network to infer all the keypoints from different person
Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an objec
Estimating 3D poses of multiple humans in real-time is a classic but still challenging task in computer vision. Its major difficulty lies in the ambiguity in cross-view association of 2D poses and the huge state space when there are multiple people i