Another class of simple graded Lie conformal algebras that cannot be embedded into general Lie conformal algebras


الملخص بالإنكليزية

In a previous paper by the authors, we obtain the first example of a finitely freely generated simple $mathbb Z$-graded Lie conformal algebra of linear growth that cannot be embedded into any general Lie conformal algebra. In this paper, we obtain, as a byproduct, another class of such Lie conformal algebras by classifying $mathbb Z$-graded simple Lie conformal algebras ${cal G}=oplus_{i=-1}^infty{cal G}_i$ satisfying the following, (1) ${cal G}_0cong{rm Vir}$, the Virasoro conformal algebra; (2) Each ${cal G}_i$ for $ige-1$ is a ${rm Vir}$-module of rank one. These algebras include some Lie conformal algebras of Block type.

تحميل البحث