ﻻ يوجد ملخص باللغة العربية
In a previous paper by the authors, we obtain the first example of a finitely freely generated simple $mathbb Z$-graded Lie conformal algebra of linear growth that cannot be embedded into any general Lie conformal algebra. In this paper, we obtain, as a byproduct, another class of such Lie conformal algebras by classifying $mathbb Z$-graded simple Lie conformal algebras ${cal G}=oplus_{i=-1}^infty{cal G}_i$ satisfying the following, (1) ${cal G}_0cong{rm Vir}$, the Virasoro conformal algebra; (2) Each ${cal G}_i$ for $ige-1$ is a ${rm Vir}$-module of rank one. These algebras include some Lie conformal algebras of Block type.
In this paper, we introduce the notion of completely non-trivial module of a Lie conformal algebra. By this notion, we classify all finite irreducible modules of a class of $mathbb{Z}^+$-graded Lie conformal algebras $mathcal{L}=bigoplus_{i=0}^{infty
In the present paper, we prove that any finite non-trivial irreducible module over a rank two Lie conformal algebra $mathcal{H}$ is of rank one. We also describe the actions of $mathcal{H}$ on its finite irreducible modules explicitly. Moreover, we s
Let $min N$, $P(t)in C[t]$. Then we have the Riemann surfaces (commutative algebras) $R_m(P)=C[t^{pm1},u | u^m=P(t)]$ and $S_m(P)=C[t , u| u^m=P(t)].$ The Lie algebras $mathcal{R}_m(P)=Der(R_m(P))$ and $mathcal{S}_m(P)=Der(S_m(P))$ are called the $m$
The essential feature of a root-graded Lie algebra L is the existence of a split semisimple subalgebra g with respect to which L is an integrable module with weights in a possibly non-reduced root system S of the same rank as the root system R of g.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st