ﻻ يوجد ملخص باللغة العربية
Autoregressive sequence Generation models have achieved state-of-the-art performance in areas like machine translation and image captioning. These models are autoregressive in that they generate each word by conditioning on previously generated words, which leads to heavy latency during inference. Recently, non-autoregressive decoding has been proposed in machine translation to speed up the inference time by generating all words in parallel. Typically, these models use the word-level cross-entropy loss to optimize each word independently. However, such a learning process fails to consider the sentence-level consistency, thus resulting in inferior generation quality of these non-autoregressive models. In this paper, we propose a simple and efficient model for Non-Autoregressive sequence Generation (NAG) with a novel training paradigm: Counterfactuals-critical Multi-Agent Learning (CMAL). CMAL formulates NAG as a multi-agent reinforcement learning system where element positions in the target sequence are viewed as agents that learn to cooperatively maximize a sentence-level reward. On MSCOCO image captioning benchmark, our NAG method achieves a performance comparable to state-of-the-art autoregressive models, while brings 13.9x decoding speedup. On WMT14 EN-DE machine translation dataset, our method outperforms cross-entropy trained baseline by 6.0 BLEU points while achieves the greatest decoding speedup of 17.46x.
Object-centric representations have recently enabled significant progress in tackling relational reasoning tasks. By building a strong object-centric inductive bias into neural architectures, recent efforts have improved generalization and data effic
Cooperative multi-agent reinforcement learning often requires decentralised policies, which severely limit the agents ability to coordinate their behaviour. In this paper, we show that common knowledge between agents allows for complex decentralised
Social learning is a key component of human and animal intelligence. By taking cues from the behavior of experts in their environment, social learners can acquire sophisticated behavior and rapidly adapt to new circumstances. This paper investigates
The Persistent Monitoring (PM) problem seeks to find a set of trajectories (or controllers) for robots to persistently monitor a changing environment. Each robot has a limited field-of-view and may need to coordinate with others to ensure no point in
Existing evaluation suites for multi-agent reinforcement learning (MARL) do not assess generalization to novel situations as their primary objective (unlike supervised-learning benchmarks). Our contribution, Melting Pot, is a MARL evaluation suite th