ﻻ يوجد ملخص باللغة العربية
We compare the solutions of two one-dimensional Poisson problems on an interval with Robin boundary conditions, one with given data, and one where the data has been symmetrized. When the Robin parameter is positive and the symmetrization is symmetric decreasing rearrangement, we prove that the solution to the symmetrized problem has larger increasing convex means. When the Robin parameter equals zero (so that we have Neumann boundary conditions) and the symmetrization is decreasing rearrangement, we similarly show that the solution to the symmetrized problem has larger convex means.
In this paper we study the best constant in a Hardy inequality for the p-Laplace operator on convex domains with Robin boundary conditions. We show, in particular, that the best constant equals $((p-1)/p)^p$ whenever Dirichlet boundary conditions are
We investigate existence and nonexistence of stationary stable nonconstant solutions, i.e. patterns, of semilinear parabolic problems in bounded domains of Riemannian manifolds satisfying Robin boundary conditions. These problems arise in several mod
Let $Omegasubsetmathbb{R}^ u$, $ uge 2$, be a $C^{1,1}$ domain whose boundary $partialOmega$ is either compact or behaves suitably at infinity. For $pin(1,infty)$ and $alpha>0$, define [ Lambda(Omega,p,alpha):=inf_{substack{uin W^{1,p}(Omega) u otequ
We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable con
The worldline formalism has been widely used to compute physical quantities in quantum field theory. However, applications of this formalism to quantum fields in the presence of boundaries have been studied only recently. In this article we show how