ﻻ يوجد ملخص باللغة العربية
We explore the possibility to identify areas of intense patch formation from floating items due to systematic convergence of surface velocity fields by means of a visual comparison of Lagrangian Coherent Structures (LCS) and estimates of areas prone to patch formation using the concept of Finite-Time Compressibility (FTC, a generalisation of the notion of time series of divergence). The LCSs are evaluated using the Finite Time Lyapunov Exponent (FTLE) method. The test area is the Gulf of Finland (GoF) in the Baltic Sea. A basin-wide spatial average of backward FTLE is calculated for the GoF for the first time. This measure of the mixing strength displays a clear seasonal pattern. The evaluated backward FTLE features are linked with potential patch formation regions with high FTC levels. It is shown that areas hosting frequent upwelling or downwelling have consistently stronger than average mixing intensity. The combination of both methods, FTC and LCS, has the potential of being a powerful tool to identify the formation of patches of pollution at the sea surface.
Coastal tidal estuaries are vital to the exchange of energy and material between inland waters and the open ocean. Debris originating from the land and ocean enter this environment and are transported by currents (river outflow and tide), wind, waves
In this paper we describe the construction of an efficient probabilistic parameterization that could be used in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An Eulerian model using a coarse-grained
It is important to be able to calculate the moist-air entropy of the atmosphere with precision. A potential temperature has already been defined from the third law of thermodynamics for this purpose. However, a doubt remains as to whether this entrop
A careful reading of old articles puts Olivier Pauluis criticisms concerning the definition of isentropic processes in terms of a potential temperature closely associated with the entropy of moist air, together with the third principle of thermodynamics, into perspective.
In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitr