ﻻ يوجد ملخص باللغة العربية
We give a lower bound of the $delta$-invariants of ample line bundles in terms of Seshadri constants. As applications, we prove the uniform K-stability of infinitely many families of Fano hypersurfaces of arbitrarily large index, as well as the uniform K-stability of most families of smooth Fano threefolds of Picard number one.
For a given K-polystable Fano manifold X and a natural number l, we show that there exists a rational number 0 < c < 1 depending only on the dimension of X, such that $Din |-lK_X|$ is GIT-(semi/poly)stable under the action of Aut(X) if and only if th
We prove that every projectively normal Fano manifold in $mathbb{P}^{n+r}$ of index $1$, codimension $r$ and dimension $ngeq 10r$ is birationally superrigid and K-stable. This result was previously proved by Zhuang under the complete intersection assumption.
We introduce Seshadri constants for line bundles in a relative setting. They generalize the classical Seshadri constants of line bundles on projective varieties and their extension to vector bundles studied by Beltrametti-Schneider-Sommese and Hacon.
We develop a local positivity theory for movable curves on projective varieties similar to the classical Seshadri constants of nef divisors. We give analogues of the Seshadri ampleness criterion, of a characterization of the augmented base locus of a
We present some applications of the deformation theory of toric Fano varieties to K-(semi/poly)stability of Fano varieties. First, we present two examples of K-polystable toric Fano 3-fold with obstructed deformations. In one case, the K-moduli space