Directional excitation of guidance modes is central to many applications ranging from light harvesting, optical information processing to quantum optical technology. Of paramount interest, especially, the active control of near-field directionality provides a new paradigm for the real-time on-chip manipulation of light. Here we find that for a given dipolar source, its near-field directionality can be toggled efficiently via tailoring the polarization of surface waves that are excited, for example, via tuning the chemical potential of graphene in a graphene-metasurface waveguide. This finding enables a feasible scheme for the active near-field directionality. Counterintuitively, we reveal that this scheme can transform a circular electric/magnetic dipole into a Huygens dipole in the near-field coupling. Moreover, for Janus dipoles, this scheme enables us to actively flip their near-field coupling and non-coupling faces.