ﻻ يوجد ملخص باللغة العربية
Recent advances in machine learning have become increasingly popular in the applications of phase transitions and critical phenomena. By machine learning approaches, we try to identify the physical characteristics in the two-dimensional percolation model. To achieve this, we adopt Monte Carlo simulation to generate dataset at first, and then we employ several approaches to analyze the dataset. Four kinds of convolutional neural networks (CNNs), one variational autoencoder (VAE), one convolutional VAE (cVAE), one principal component analysis (PCA), and one $k$-means are used for identifying order parameter, the permeability, and the critical transition point. The former three kinds of CNNs can simulate the two order parameters and the permeability with high accuracy, and good extrapolating performance. The former two kinds of CNNs have high anti-noise ability. To validate the robustness of the former three kinds of CNNs, we also use the VAE and the cVAE to generate new percolating configurations to add perturbations into the raw configurations. We find that there is no difference by using the raw or the perturbed configurations to identify the physical characteristics, under the prerequisite of corresponding labels. In the case of lacking labels, we use unsupervised learning to detect the physical characteristics. The PCA, a classical unsupervised learning, performs well when identifying the permeability but fails to deduce order parameter. Hence, we apply the fourth kinds of CNNs with different preset thresholds, and identify a new order parameter and the critical transition point. Our findings indicate that the effectiveness of machine learning still needs to be evaluated in the applications of phase transitions and critical phenomena.
Topological materials discovery has emerged as an important frontier in condensed matter physics. Recent theoretical approaches based on symmetry indicators and topological quantum chemistry have been used to identify thousands of candidate topologic
We apply generalisations of the Swendson-Wang and Wolff cluster algorithms, which are based on the construction of Fortuin-Kasteleyn clusters, to the three-dimensional $pm 1$ random-bond Ising model. The behaviour of the model is determined by the te
We present an exhaustive mathematical analysis of the recently proposed Non-Poissonian Ac- tivity Driven (NoPAD) model [Moinet et al. Phys. Rev. Lett., 114 (2015)], a temporal network model incorporating the empirically observed bursty nature of soci
This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equ
Motivated by the importance of geometric information in real systems, a new model for long-range correlated percolation in link-adding networks is proposed with the connecting probability decaying with a power-law of the distance on the two-dimension