ﻻ يوجد ملخص باللغة العربية
Multipartite entanglement plays an important role in controlled quantum teleportation, quantum secret sharing, quantum metrology and some other important quantum information branches. However, the maximally multipartite entangled state will degrade into the mixed state because of the noise. We present an efficient multipartite entanglement purification protocol (EPP) which can distill the high quality entangled states from low quality entangled states for N-photon systems in a Greenberger-Horne-Zeilinger (GHZ) state in only linear optics. After performing the protocol, the spatial-mode entanglement is used to purify the polarization entanglement and one pair of high quality polarization entangled state will be obtained. This EPP has several advantages. Firstly, with the same purification success probability, this EPP only requires one pair of multipartite GHZ state, while existing EPPs usually require two pairs of multipartite GHZ state. Secondly, if consider the practical transmission and detector efficiency, this EPP may be extremely useful for the ratio of purification efficiency is increased rapidly with both the number of photons and the transmission distance. Thirdly, this protocol requires linear optics and does not add additional measurement operations, so that it is feasible for experiment. All these advantages will make this protocol have potential application for future quantum information processing.
Entanglement purification is a powerful method to distill the high-quality entanglement from low-quality entanglement. In the paper, we propose an efficient two-step entanglement purification protocol (EPP) for the polarization entanglement by using
The entanglement resource required for quantum information processing comes in a variety of forms, from Bell states to multipartite GHZ states or cluster states. Purifying these resources after their imperfect generation is an indispensable step towa
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classi
Single-photon entanglement is a simple form of entanglement that exists between two spatial modes sharing a single photon. Despite its elementary form, it provides a resource as useful as polarization-entangled photons and it can be used for quantum
Entangled systems in experiments may be lost or offline in distributed quantum information processing. This inspires a general problem to characterize quantum operations which result in breaking of entanglement or not. Our goal in this work is to sol