ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryonic Tully-Fisher test of Grumillers modified gravity model

108   0   0.0 ( 0 )
 نشر من قبل Arunava Bhadra Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We test the Grumillers quantum motivated modified gravity model, which at large distances modifies the Newtonian potential and describes the galactic rotation curves of disk galaxies in terms of a Rindler acceleration term without the need of any dark matter, against the baryonic Tully-Fisher feature that relates the total baryonic mass of a galaxy with flat rotation velocity of the galaxy. We estimate the Rindler acceleration parameter from observed baryonic mass versus rotation velocity data of a sample of sixty galaxies. Grumillers model is found to describe the observed data reasonably well.



قيم البحث

اقرأ أيضاً

The redshift evolution of the Tully-Fisher Relation probes gravitational dynamics that must be consistent with any modified gravity theory seeking to explain the galactic rotation curves without the need for dark matter. Within the context of non-rel ativistic Modified Newtonian Dynamics (MOND), the characteristic acceleration scale of the theory appears to be related to the current value of either the Hubble constant, i.e., alpha ~ cH_0, or the dark energy density, i.e., alpha (8 pi G rho_lambda/3)^{1/2}. If these relations are the manifestation of a fundamental coupling of a_0 to either of the two cosmological parameters, the cosmological evolution would then dictate a particular dependence of the MOND acceleration scale with redshift that can be tested with Tully-Fisher relations of high-redshift galaxies. We compare this prediction to two sets of Tully-Fisher data with redshifts up to z=1.2. We find that both couplings are excluded within the formal uncertainties. However, when we take into account the potential systematic uncertainties in the data, we find that they marginally favor the coupling of the MOND acceleration scale to the density of dark energy.
We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC20 00) I-band sample; and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3m telescope and the ATNF Parkes telescope from Gurovichs thesis sample (2005). As in MC2000, we re-cast the TF and BTF relations as relationships between baryo n mass and W_{20}. First we report some numerical errors in MC2000. Then, we c alculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the T F relation and that the slopes of the BTF relations are statistically flatter th an the equivalent TF relations. Further, for the fainter galaxies which include the I-band MCG2000 and HI-selected galaxies of Gurovichs thesis sample, we calc ulate a break from a simple power law model because of what appears to be real c osmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller reduced chi^2.
In a LCDM cosmology, the baryonic Tully-Fisher relation (BTFR) is expected to show significant intrinsic scatter resulting from the mass-concentration relation of dark matter halos and the baryonic-to-halo mass ratio. We study the BTFR using a sample of 118 disc galaxies (spirals and irregulars) with data of the highest quality: extended HI rotation curves (tracing the outer velocity) and Spitzer photometry at 3.6 $mu$m (tracing the stellar mass). Assuming that the stellar mass-to-light ratio (M*/L) is nearly constant at 3.6 $mu$m, we find that the scatter, slope, and normalization of the BTFR systematically vary with the adopted M*/L. The observed scatter is minimized for M*/L > 0.5, corresponding to nearly maximal discs in high-surface-brightness galaxies and BTFR slopes close to ~4. For any reasonable value of M*/L, the intrinsic scatter is ~0.1 dex, below general LCDM expectations. The residuals show no correlations with galaxy structural parameters (radius or surface brightness), contrary to the predictions from some semi-analytic models of galaxy formation. These are fundamental issues for LCDM cosmology.
In this work we present a brief discussion about modified and extended cosmological models using current observational tests. We show that according to these astrophysical samples based in late universe measurements, theories like $f(R)$ and $f(T,B)$ can provide useful interpretation to a dynamical dark energy. At this stage, precision cosmostatistics has also become a well-motivated endeavour by itself to test gravitational physics at cosmic scales and these analyses can be employed to test the viability and future constrains over specific cosmological models of these theories of gravity, making them a good approach to propose an alternative path from the standard $Lambda$CDM scenario.
We compare the Baryonic Tully-Fisher relation (BTFR) of simulations and observations of galaxies ranging from dwarfs to spirals, using various measures of rotational velocity Vrot. We explore the BTFR when measuring Vrot at the flat part of the rotat ion curve, Vflat, at the extent of HI gas, Vlast, and using 20% (W20) and 50% (W50) of the width of HI line profiles. We also compare with the maximum circular velocity of the parent halo, Vmax, within dark matter only simulations. The different BTFRs increasingly diverge as galaxy mass decreases. Using Vlast one obtains a power law over four orders of magnitude in baryonic mass, with slope similar to the observed BTFR. Measuring Vflat gives similar results as Vlast when galaxies with rising rotation curves are excluded. However, higher rotation velocities would be found for low mass galaxies if the cold gas extended far enough for Vrot to reach a maximum. W20 gives a similar slope as Vlast but with slightly lower values of Vrot for low mass galaxies, although this may depend on the extent of the gas in your galaxy sample. W50 bends away from these other relations toward low velocities at low masses. By contrast, Vmax bends toward high velocities for low mass galaxies, as cold gas does not extend out to the radius at which halos reach Vmax. Our study highlights the need for careful comparisons between observations and models: one needs to be consistent about the particular method of measuring Vrot, and precise about the radius at which velocities are measured.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا