ﻻ يوجد ملخص باللغة العربية
The heaviest N=Z doubly-magic nucleus, $^{100}$Sn, and the neighboring nuclei offer unique opportunities to investigate the properties of nuclear interaction in extreme conditions. In particular, the Cd isotopes are expected to present features similar to those found in the Sn isotopic chain, since they have only two proton holes in the Z=50 shell. In this manuscript, the lifetime measurements of low-lying states in the even-mass $^{102-108}$Cd is presented. Thanks to the powerful detection capabilities of AGATA array and VAMOS++ spectrometer, the unusual employment of multi-nucleon transfer reactions permitted to investigate the first 2$^+$ and 4$^+$ states in all these nuclei, together with various deformed bands in $^{106}$Cd. The results were interpreted in the context of new state-of-the-art beyond-mean-field calculations, using the symmetry-conserving configuration-mixing approach. Despite the similarities in the electromagnetic properties of the low-lying states, there is a fundamental structural difference between the ground-state bands in the Z=48 and Z=50 isotopes. The comparison between experimental and theoretical results revealed a rotational character of the Cd nuclei, which have prolate-deformed ground states with $beta_2 approx 0.2$. At this deformation Z=48 becomes a closed-shell configuration, which is favored with respect to the spherical one.
The lifetimes for the high spin levels of the yrast band of $^{110}$Cd has been measured. The estimated B(E2) values decrease with increase in angular momentum. This is the characteristic of Anti magnetic rotation as reported in $^{106,108}$Cd. Howev
Electromagnetic dipole-strength distributions up to the particle separation energies are studied for the stable even-even nuclides $^{92,94,96,98,100}$Mo in photon scattering experiments at the superconducting electron accelerator ELBE of the Forschu
The isoscalar giant monopole resonance (ISGMR) in even-A Cd isotopes has been studied by inelastic ${alpha}$-scattering at 100 MeV/u and at extremely forward angles, including 0deg. The asymmetry term in the nuclear incompressibility extracted from t
Background: A global description of the ground-state properties of nuclei in a wide mass range in a unified manner is desirable not only for understanding exotic nuclei but for providing nuclear data for applications. Purpose: We demonstrate the KIDS
We intend to provide a consistent description of the even-even Hg isotopes, 172-200Hg, using the interacting boson model including configuration mixing. We pay special attention to the description of the shape of the nuclei and to its connection with the shape coexistence phenomenon.