ﻻ يوجد ملخص باللغة العربية
The presence of chiral modes on the edges of quantum Hall samples is essential to our understanding of the quantum Hall effect. In particular, these edge modes should support ballistic transport and therefore, in a single particle picture, be supported in the absolutely continuous spectrum of the single-particle Hamiltonian. We show in this note that if a free fermion system on the two-dimensional lattice is gapped in the bulk, and has a nonvanishing Hall conductance, then the same system put on a half-space geometry supports edge modes whose spectrum fills the entire bulk gap and is absolutely continuous.
In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra
Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T
We continue to investigate absolutely continuous spectrum of generalized indefinite strings. By following an approach of Deift and Killip, we establish stability of the absolutely continuous spectra of two more model examples of generalized indefinit
Devices exhibiting the integer quantum Hall effect can be modeled by one-electron Schroedinger operators describing the planar motion of an electron in a perpendicular, constant magnetic field, and under the influence of an electrostatic potential. T
The diffraction spectra of lattice gas models on Z^d with finite-range ferromagnetic two-body interaction above T_c or with certain rates of decay of the potential are considered. We show that these diffraction spectra almost surely exist, are Z^d-pe