ﻻ يوجد ملخص باللغة العربية
The determination of nuclear symmetry energy, and in particular, its density dependence, is a long-standing problem for nuclear physics community. Previous studies have found that the product of electric dipole polarizability $alpha_D$ and symmetry energy at saturation density $J$ has a strong linear correlation with $L$, the slope parameter of symmetry energy. However, current uncertainty of $J$ hinders the precise constraint on $L$. We investigate the correlations between electric dipole polarizability $alpha_D$ (or times symmetry energy at saturation density $J$) in Sn isotopes and the slope parameter of symmetry energy $L$ using the quasiparticle random-phase approximation based on Skyrme Hartree-Fock-Bogoliubov. A strong and model-independent linear correlation between $alpha_D$ and $L$ is found in neutron-rich Sn isotopes where pygmy dipole resonance (PDR) gives a considerable contribution to $alpha_D$, attributed to the pairing correlations playing important roles through PDR. This newly discovered linear correlation would help one to constrain $L$ and neutron-skin thickness $Delta R_textnormal{np}$ stiffly if $alpha_D$ is measured with high resolution in neutron-rich nuclei. Besides, a linear correlation between $alpha_D J$ in a nucleus around $beta$-stability line and $alpha_D$ in a neutron-rich nucleus can be used to assess $alpha_D$ in neutron-rich nuclei.
The electric dipole moment (EDM) is an excellent probe of new physics beyond the standard model of particle physics. The EDM of light nuclei is particularly interesting due to the high sensitivity to the hadron level CP violation. In this proceedings
Starting from the quasiparticle random phase approximation based on the Skyrme interaction SLy5, we study the effects of phonon-phonon coupling~(PPC) on the low-energy electric dipole response in $^{40-58}$Ca. Using the same set of parameters we desc
We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction
Following a previous paper [Y. Shi, Phys. Rev. C 98, 014329(2018)], we present an extension of the density-functional theory to allow for dynamic calculations based on the obtained static Hartree-Fock results. We perform extensive benchmark calculati
The electric dipole strength distribution in Ca-48 between 5 and 25 MeV has been determined at RCNP, Osaka, from proton inelastic scattering experiments at forward angles. Combined with photoabsorption data at higher excitation energy, this enables f