ﻻ يوجد ملخص باللغة العربية
We analyze light curves of 284,834 unique K2 targets using a Gaussian process model with a quasi-periodic kernel function. By crossmatching K2 stars to observations from Gaia Data Release 2, we have identified 69,627 likely main-sequence stars. From these we select a subsample of 8,977 stars on the main-sequence with highly precise rotation period measurements. With this sample we recover the gap in the rotation period-color diagram first reported by cite{McQuillan2013}. While the gap was tentatively detected in cite{Reinhold2020}, this work represents the first robust detection of the gap in K2 data for field stars. This is significant because K2 observed along many lines of sight at wide angular separation, in contrast to Keplers single line of sight. Together with recent results for rotation in open clusters, we interpret this gap as evidence for a departure from the $t^{-1/2}$ Skumanich spin down law, rather than an indication of a bimodal star formation history. We provide maximum likelihood estimates and uncertainties for all parameters of the quasi-periodic light curve model for each of the 284,834 stars in our sample.
Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR tele
The open cluster M67 offers the unique opportunity to measure rotation periods for solar-age stars across a range of masses, potentially filling a critical gap in the understanding of angular momentum loss in older main sequence stars. The observatio
HD144941 is an evolved early-type metal-poor low-mass star with a hydrogen-poor surface. It is frequently associated with other intermediate helium-rich subdwarfs and extreme helium stars. Previous photometric studies have failed to detect any variab
Young low-mass stars of equal-mass exhibit a distribution of rotation periods. At the very early phases of stellar evolution, this distribution is set by the star-disc locking mechanism. The primordial disc lifetime and, consequently, the duration of
We introduce a catalog of stellar properties for stars observed by the Kepler follow-on mission, K2. We base the catalog on a cross-match between the K2 Campaign target lists and the current working version of the NASA TESS target catalog. The result