ﻻ يوجد ملخص باللغة العربية
We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically we show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for complete isometric isomorphisms between their tensor algebras. In particular, this settles a conjecture of Davidson and Kakariadis relating to work of Arveson from the sixties, and extends related work of Kakariadis and Katsoulis.
We prove that the isomorphism relation for separable C$^*$-algebras, and also the relations of complete and $n$-isometry for operator spaces and systems, are Borel reducible to the orbit equivalence relation of a Polish group action on a standard Borel space.
We continue the study of isomorphisms of tensor algebras associated to a C*-correspondences in the sense of Muhly and Solel. Inspired by by recent work of Davidson, Ramsey and Shalit, we solve isomorphism problems for tensor algebras arising from wei
Let $(G, P)$ be an abelian, lattice ordered group and let $X$ be a compactly aligned product system over $P$. We show that the C*-envelope of the Nica tensor algebra $mathcal{N}mathcal{T}^+_X$ coincides with both Sehnems covariance algebra $mathcal{A
Let $G$ be a locally compact abelian group. By modifying a theorem of Pedersen, it follows that actions of $G$ on $C^*$-algebras $A$ and $B$ are outer conjugate if and only if there is an isomorphism of the crossed products that is equivariant for th
We introduce a Morita type equivalence: two operator algebras $A$ and $B$ are called strongly $Delta $-equivalent if they have completely isometric representations $alpha $ and $beta $ respectively and there exists a ternary ring of operators $M$ suc