ﻻ يوجد ملخص باللغة العربية
For the rational quantum Calogero systems of type $A_1{oplus}A_2$, $AD_3$ and $BC_3$, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra `odd charges appearing for integral couplings. Formulae for the energy eigenstates are used to tabulate the low-level wave functions.
We review some recents developments of the algebraic structures and spectral properties of non-Hermitian deformations of Calogero models. The behavior of such extensions is illustrated by the $A_2$ trigonometric and the $D_3$ angular Calogero models.
We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expresse
We consider several classes of $sigma$-models (on groups and symmetric spaces, $eta$-models, $lambda$-models) with local couplings that may depend on the 2d coordinates, e.g. on time $tau$. We observe that (i) starting with a classically integrable 2
It has been recently shown that every SCFT living on D3 branes at a toric Calabi-Yau singularity surprisingly also describes a complete integrable system. In this paper we use the Master Space as a bridge between the integrable system and the underly
We compute structure constants in N=4 SYM at one loop using Integrability. This requires having full control over the two loop eigenvectors of the dilatation operator for operators of arbitrary size. To achieve this, we develop an algebraic descripti