ﻻ يوجد ملخص باللغة العربية
There are no known failures of Bounded Negativity in characteristic 0. In the light of recent work showing the Bounded Negativity Conjecture fails in positive characteristics for rational surfaces, we propose new characteristic free conjectures as a replacement. We also develop bounds on numerical characteristics of curves constraining their negativity. For example, we show that the $H$-constant of a rational curve $C$ with at most $9$ singular points satisfies $H(C)>-2$ regardless of the characteristic.
We provide a lower bound on the degree of curves of the projective plane $mathbb{P}^2$ passing through the centers of a divisorial valuation $ u$ of $mathbb{P}^2$ with prescribed multiplicities, and an upper bound for the Seshadri-type constant of $
Shimura curves on Shimura surfaces have been a candidate for counterexamples to the bounded negativity conjecture. We prove that they do not serve this purpose: there are only finitely many whose self-intersection number lies below a given bound. P
Studying degenerations of moduli spaces of semistable principal bundles on smooth curves leads to the problem of constructing and studying moduli spaces on singular curves. In this note, we will see that the moduli spaces of $delta$-semistable pseudo
In this article we construct a categorical resolution of singularities of an excellent reduced curve $X$, introducing a certain sheaf of orders on $X$. This categorical resolution is shown to be a recollement of the derived category of coherent sheav
We investigate degenerations of syzygy bundles on plane curves over $p$-adic fields. We use Mustafin varieties which are degenerations of projective spaces to find a large family of models of plane curves over the ring of integers such that the speci