Refined blowup analysis and nonexistence of Type II blowups for an energy critical nonlinear heat equation


الملخص بالإنكليزية

We consider the energy critical semilinear heat equation $$ left{begin{aligned} &partial_t u-Delta u =|u|^{frac{4}{n-2}}u &mbox{in } {mathbb R}^ntimes(0,T), &u(x,0)=u_0(x), end{aligned}right. $$ where $ ngeq 3$, $u_0in L^infty({mathbb R}^n)$, and $Tin {mathbb R}^+$ is the first blow up time. We prove that if $ n geq 7$ and $ u_0 geq 0$, then any blowup must be of Type I, i.e., [|u(cdot, t)|_{L^infty({mathbb R}^n)}leq C(T-t)^{-frac{1}{p-1}}.] A similar result holds for bounded convex domains. The proof relies on a reverse inner-outer gluing mechanism and delicate analysis of bubbling behavior (bubbling tower/cluster).

تحميل البحث