ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) are increasingly deployed in different applications to achieve state-of-the-art performance. However, they are often applied as a black box with limited understanding of what knowledge the model has learned from the data. In this paper, we focus on image classification and propose a method to visualize and understand the class-wise knowledge (patterns) learned by DNNs under three different settings including natural, backdoor and adversarial. Different to existing visualization methods, our method searches for a single predictive pattern in the pixel space to represent the knowledge learned by the model for each class. Based on the proposed method, we show that DNNs trained on natural (clean) data learn abstract shapes along with some texture, and backdoored models learn a suspicious pattern for the backdoored class. Interestingly, the phenomenon that DNNs can learn a single predictive pattern for each class indicates that DNNs can learn a backdoor even from clean data, and the pattern itself is a backdoor trigger. In the adversarial setting, we show that adversarially trained models tend to learn more simplified shape patterns. Our method can serve as a useful tool to better understand the knowledge learned by DNNs on different datasets under different settings.
Deep convolutional neural networks learn extremely powerful image representations, yet most of that power is hidden in the millions of deep-layer parameters. What exactly do these parameters represent? Recent work has started to analyse CNN represent
Convolutional networks for single-view object reconstruction have shown impressive performance and have become a popular subject of research. All existing techniques are united by the idea of having an encoder-decoder network that performs non-trivia
We study deep neural networks (DNNs) trained on natural image data with entirely random labels. Despite its popularity in the literature, where it is often used to study memorization, generalization, and other phenomena, little is known about what DN
Learning how to act when there are many available actions in each state is a challenging task for Reinforcement Learning (RL) agents, especially when many of the actions are redundant or irrelevant. In such cases, it is sometimes easier to learn whic
Yes, they do. This paper provides the first empirical demonstration that deep convolutional models really need to be both deep and convolutional, even when trained with methods such as distillation that allow small or shallow models of high accuracy