ﻻ يوجد ملخص باللغة العربية
We consider the problem of empirical risk minimization given a database, using the gradient descent algorithm. We note that the function to be optimized may be non-convex, consisting of saddle points which impede the convergence of the algorithm. A perturbed gradient descent algorithm is typically employed to escape these saddle points. We show that this algorithm, that perturbs the gradient, inherently preserves the privacy of the data. We then employ the differential privacy framework to quantify the privacy hence achieved. We also analyze the change in privacy with varying parameters such as problem dimension and the distance between the databases.
Common datasets have the form of elements with keys (e.g., transactions and products) and the goal is to perform analytics on the aggregated form of key and frequency pairs. A weighted sample of keys by (a function of) frequency is a highly versatile
Correlation clustering is a widely used technique in unsupervised machine learning. Motivated by applications where individual privacy is a concern, we initiate the study of differentially private correlation clustering. We propose an algorithm that
While rich medical datasets are hosted in hospitals distributed across the world, concerns on patients privacy is a barrier against using such data to train deep neural networks (DNNs) for medical diagnostics. We propose Dopamine, a system to train D
In this work we consider the problem of online submodular maximization under a cardinality constraint with differential privacy (DP). A stream of $T$ submodular functions over a common finite ground set $U$ arrives online, and at each time-step the d
We revisit the problem of $n$-gram extraction in the differential privacy setting. In this problem, given a corpus of private text data, the goal is to release as many $n$-grams as possible while preserving user level privacy. Extracting $n$-grams is