ﻻ يوجد ملخص باللغة العربية
Mining Electronic Health Records (EHRs) becomes a promising topic because of the rich information they contain. By learning from EHRs, machine learning models can be built to help human experts to make medical decisions and thus improve healthcare quality. Recently, many models based on sequential or graph models are proposed to achieve this goal. EHRs contain multiple entities and relations and can be viewed as a heterogeneous graph. However, previous studies ignore the heterogeneity in EHRs. On the other hand, current heterogeneous graph neural networks cannot be simply used on an EHR graph because of the existence of hub nodes in it. To address this issue, we propose Heterogeneous Similarity Graph Neural Network (HSGNN) analyze EHRs with a novel heterogeneous GNN. Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN. The preprocessing method normalizes edges and splits the EHR graph into multiple homogeneous graphs while each homogeneous graph contains partial information of the original EHR graph. The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction. Experimental results show that HSGNN outperforms other baselines in the diagnosis prediction task.
Computational prediction of in-hospital mortality in the setting of an intensive care unit can help clinical practitioners to guide care and make early decisions for interventions. As clinical data are complex and varied in their structure and compon
In recent years, we have witnessed an increased interest in temporal modeling of patient records from large scale Electronic Health Records (EHR). While simpler RNN models have been used for such problems, memory networks, which in other domains were
Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can p
Effective modeling of electronic health records (EHR) is rapidly becoming an important topic in both academia and industry. A recent study showed that using the graphical structure underlying EHR data (e.g. relationship between diagnoses and treatmen
Identifying patients who will be discharged within 24 hours can improve hospital resource management and quality of care. We studied this problem using eight years of Electronic Health Records (EHR) data from Stanford Hospital. We fit models to predi