ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Energy-Efficient Resource Management, SIC Ordering, and Beamforming Design for MC MISO-NOMA Enabled 6G

110   0   0.0 ( 0 )
 نشر من قبل Abolfazl Zakeri
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies a novel approach for successive interference cancellation (SIC) ordering and beamforming in a multiple antennas non-orthogonal multiple access (NOMA) network with multi-carrier multi-user setup. To this end, we formulate a joint beamforming design, subcarrier allocation, user association, and SIC ordering algorithm to maximize the worst-case energy efficiency (EE). The formulated problem is a non-convex mixed integer non-linear programming (MINLP) which is generally difficult to solve. To handle it, we first adopt the linearizion technique as well as relaxing the integer variables, and then we employ the Dinkelbach algorithm to convert it into a more mathematically tractable form. The adopted non-convex optimization problem is transformed into an equivalent rank-constrained semidefinite programming (SDP) and is solved by SDP relaxation and exploiting sequential fractional programming. Furthermore, to strike a balance between complexity and performance, a low complex approach based on alternative optimization is adopted. Numerical results unveil that the proposed SIC ordering method outperforms the conventional existing works addressed in the literature.



قيم البحث

اقرأ أيضاً

The combination of non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) can significantly improve the spectrum efficiency beyond the fifth-generation network. In this paper, we mainly focus on energy-efficient resource allocation for a multi-user, multi-BS NOMA assisted MEC network with imperfect channel state information (CSI), in which each user can upload its tasks to multiple base stations (BSs) for remote executions. To minimize the energy consumption, we consider jointly optimizing the task assignment, power allocation and user association. As the main contribution, with imperfect CSI, the optimal closed-form expressions of task assignment and power allocation are analytically derived for the two-BS case. Specifically, the original formulated problem is nonconvex. We first transform the probabilistic problem into a non-probabilistic one. Subsequently, a bilevel programming method is proposed to derive the optimal solution. In addition, by incorporating the matching algorithm with the optimal task and power allocation, we propose a low complexity algorithm to efficiently optimize user association for the multi-user and multi-BS case. Simulations demonstrate that the proposed algorithm can yield much better performance than the conventional OMA scheme but also the identical results with lower complexity from the exhaustive search with the small number of BSs.
Energy-efficient design and secure communications are of crucial importance in wireless communication networks. However, the energy efficiency achieved by using physical layer security can be limited by the channel conditions. In order to tackle this problem, an intelligent reflecting surface (IRS) assisted multiple input single output (MISO) network with independent cooperative jamming is studied. The energy efficiency is maximized by jointly designing the transmit and jamming beamforming and IRS phase-shift matrix under both the perfect channel state information (CSI) and the imperfect CSI. In order to tackle the challenging non-convex fractional problems, an algorithm based on semidefinite programming (SDP) relaxation is proposed for solving energy efficiency maximization problem under the perfect CSI case while an alternate optimization algorithm based on $mathcal{S}$-procedure is used for solving the problem under the imperfect CSI case. Simulation results demonstrate that the proposed design outperforms the benchmark schemes in term of energy efficiency. Moreover, the tradeoff between energy efficiency and the secrecy rate is found in the IRS-assisted MISO network. Furthermore, it is shown that IRS can help improve energy efficiency even with the uncertainty of the CSI.
112 - Gui Zhou , Cunhua Pan , Hong Ren 2019
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). In this paper, we study the worst-case robust beamforming design for an IRS-aided multiuser multiple-input single-output (MU-MISO) system under the assumption of imperfect CSI. We aim for minimizing the transmit power while ensuring that the achievable rate of each user meets the quality of service (QoS) requirement for all possible channel error realizations. With unit-modulus and rate constraints, this problem is non-convex. The imperfect CSI further increases the difficulty of solving this problem. By using approximation and transformation techniques, we convert this problem into a squence of semidefinite programming (SDP) subproblems that can be efficiently solved. Numerical results show that the proposed robust beamforming design can guarantee the required QoS targets for all the users.
The sixth generation (6G) network must provide performance superior to previous generations in order to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, sub 1 millisecond l atency and ubiquitous connection for Internet of Everything. However, with the scarcity of spectrum resources, efficient resource management and sharing is crucial to achieve all these ambitious requirements. One possible technology to enable all of this is blockchain, which has recently gained significance and will be of paramount importance to 6G networks and beyond due to its inherent properties. In particular, the integration of blockchain in 6G will enable the network to monitor and manage resource utilization and sharing efficiently. Hence, in this article, we discuss the potentials of blockchain for resource management and sharing in 6G using multiple application scenarios namely, Internet of things, device-to-device communications, network slicing, and inter-domain blockchain ecosystems.
184 - Zhiguo Ding 2019
This paper considers the design of beamforming for orthogonal time frequency space modulation assisted non-orthogonal multiple access (OTFS-NOMA) networks, in which a high-mobility user is sharing the spectrum with multiple low-mobility NOMA users. I n particular, the beamforming design is formulated as an optimization problem whose objective is to maximize the low-mobility NOMA users data rates while guaranteeing that the high-mobility users targeted data rate can be met. Both the cases with and without channel state information errors are considered, where low-complexity solutions are developed by applying successive convex approximation and semidefinite relaxation. Simulation results are also provided to show that the use of the proposed beamforming schemes can yield a significant performance gain over random beamforming.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا