ﻻ يوجد ملخص باللغة العربية
A prototype version of the Q & U Bolometric Interferometer for Cosmology (QUBIC) underwent a campaign of testing in the laboratory at Astroparticle Physics and Cosmology in Paris. The detection chain is currently made of 256 NbSi Transition Edge Sensors cooled to 320 mK.The readout system is a 128:1 Time Domain Multiplexing scheme based on 128 SQUIDs cooled at 1K that are controlled and amplified by an SiGe Application Specific Integrated Circuit at 40 K. We report the performance of this readout chain and the characterization of the TESs. The readout system has been functionally tested and characterized in the lab and in QUBIC. The Low Noise Amplifier demonstrated a white noise level of 0.3 nV/sqrt(Hz). Characterizations of the QUBIC detectors and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. The QUBIC TES bolometer array has approximately 80% detectors within operational parameters. While still limited by microphonics from the pulse tubes and noise aliasing from readout system, the Noise Equivalent Power is about 2E-16 W/sqrt(Hz), enough for the demonstration of bolometric interferometry.
The Q and U Bolometric Interferometer for Cosmology (QUBIC) is a ground-based experiment that aims to detect B-mode polarisation anisotropies in the CMB at angular scales around the l=100 recombination peak. Systematic errors make ground-based observ
We have developed antenna-coupled transition-edge sensor (TES) bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors have reached maturity
Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays and cold optical systems to boost the mapping speed of the sky survey. For these reasons, large volume cryogenic systems, w
The BICEP/Keck (BK) experiment aims to detect the imprint of primordial gravitational waves in the Cosmic Microwave Background polarization, which would be direct evidence of the inflation theory. While the tensor-to-scalar ratio has been constrained
Between the BICEP2 and Keck Array experiments, we have deployed over 1500 dual polarized antenna coupled bolometers to map the Cosmic Microwave Backgrounds polarization. We have been able to rapidly deploy these detectors because they are completely