ﻻ يوجد ملخص باللغة العربية
We accurately approximate the contribution that photons make to the effective potential of a charged inflaton for inflationary geometries with an arbitrary first slow roll parameter $epsilon$. We find a small, nonlocal contribution and a numerically larger, local part. The local part involves first and second derivatives of $epsilon$, coming exclusively from the constrained part of the electromagnetic field which carries the long range interaction. This causes the effective potential induced by electromagnetism to respond more strongly to geometrical evolution than for either scalars, which have no derivatives, or spin one half particles, which have only one derivative. For $epsilon = 0$ our final result agrees with that of Allen on de Sitter background, while the flat space limit agrees with the classic result of Coleman and Weinberg.
We develop an analytic approximation for the coincidence limit of a massive scalar propagator in an arbitrary spatially flat, homogeneous and isotropic geometry. We employ this to compute the one loop corrections to the inflaton effective potential f
Scalar perturbations during inflation can be substantially amplified by tiny features in the inflaton potential. A bump-like feature behaves like a local speed-breaker and lowers the speed of the scalar field, thereby locally enhancing the scalar pow
The interaction between two initially causally disconnected regions of the universe is studied using analogies of non-commutative quantum mechanics and deformation of Poisson manifolds. These causally disconnect regions are governed by two independen
We describe the evolution of slowly spinning compact objects in the late inspiral with Newtonian corrections due to spin, tides, dissipation and post-Newtonian corrections to the point mass term in the action within the effective field theory framewo
We use the ideas of entropic gravity to derive the FRW cosmological model and show that for late time evolution we have an effective cosmological constant. By using the first law of thermodynamics and the modified entropy area relationship derived fr