ترغب بنشر مسار تعليمي؟ اضغط هنا

VideoClick: Video Object Segmentation with a Single Click

182   0   0.0 ( 0 )
 نشر من قبل Namdar Homayounfar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Annotating videos with object segmentation masks typically involves a two stage procedure of drawing polygons per object instance for all the frames and then linking them through time. While simple, this is a very tedious, time consuming and expensive process, making the creation of accurate annotations at scale only possible for well-funded labs. What if we were able to segment an object in the full video with only a single click? This will enable video segmentation at scale with a very low budget opening the door to many applications. Towards this goal, in this paper we propose a bottom up approach where given a single click for each object in a video, we obtain the segmentation masks of these objects in the full video. In particular, we construct a correlation volume that assigns each pixel in a target frame to either one of the objects in the reference frame or the background. We then refine this correlation volume via a recurrent attention module and decode the final segmentation. To evaluate the performance, we label the popular and challenging Cityscapes dataset with video object segmentations. Results on this new CityscapesVideo dataset show that our approach outperforms all the baselines in this challenging setting.



قيم البحث

اقرأ أيضاً

In the interactive segmentation, users initially click on the target object to segment the main body and then provide corrections on mislabeled regions to iteratively refine the segmentation masks. Most existing methods transform these user-provided clicks into interaction maps and concatenate them with image as the input tensor. Typically, the interaction maps are determined by measuring the distance of each pixel to the clicked points, ignoring the relation between clicks and mislabeled regions. We propose a Dynamic Click Transform Network~(DCT-Net), consisting of Spatial-DCT and Feature-DCT, to better represent user interactions. Spatial-DCT transforms each user-provided click with individual diffusion distance according to the target scale, and Feature-DCT normalizes the extracted feature map to a specific distribution predicted from the clicked points. We demonstrate the effectiveness of our proposed method and achieve favorable performance compared to the state-of-the-art on three standard benchmark datasets.
340 - Peidong Liu , Zibin He , Xiyu Yan 2021
Compared with tedious per-pixel mask annotating, it is much easier to annotate data by clicks, which costs only several seconds for an image. However, applying clicks to learn video semantic segmentation model has not been explored before. In this wo rk, we propose an effective weakly-supervised video semantic segmentation pipeline with click annotations, called WeClick, for saving laborious annotating effort by segmenting an instance of the semantic class with only a single click. Since detailed semantic information is not captured by clicks, directly training with click labels leads to poor segmentation predictions. To mitigate this problem, we design a novel memory flow knowledge distillation strategy to exploit temporal information (named memory flow) in abundant unlabeled video frames, by distilling the neighboring predictions to the target frame via estimated motion. Moreover, we adopt vanilla knowledge distillation for model compression. In this case, WeClick learns compact video semantic segmentation models with the low-cost click annotations during the training phase yet achieves real-time and accurate models during the inference period. Experimental results on Cityscapes and Camvid show that WeClick outperforms the state-of-the-art methods, increases performance by 10.24% mIoU than baseline, and achieves real-time execution.
128 - Kai Xu , Angela Yao 2021
We propose an efficient inference framework for semi-supervised video object segmentation by exploiting the temporal redundancy of the video. Our method performs inference on selected keyframes and makes predictions for other frames via propagation b ased on motion vectors and residuals from the compressed video bitstream. Specifically, we propose a new motion vector-based warping method for propagating segmentation masks from keyframes to other frames in a multi-reference manner. Additionally, we propose a residual-based refinement module that can correct and add detail to the block-wise propagated segmentation masks. Our approach is flexible and can be added on top of existing video object segmentation algorithms. With STM with top-k filtering as our base model, we achieved highly competitive results on DAVIS16 and YouTube-VOS with substantial speedups of up to 4.9X with little loss in accuracy.
This paper presents a novel approach for segmenting moving objects in unconstrained environments using guided convolutional neural networks. This guiding process relies on foreground masks from independent algorithms (i.e. state-of-the-art algorithms ) to implement an attention mechanism that incorporates the spatial location of foreground and background to compute their separated representations. Our approach initially extracts two kinds of features for each frame using colour and optical flow information. Such features are combined following a multiplicative scheme to benefit from their complementarity. These unified colour and motion features are later processed to obtain the separated foreground and background representations. Then, both independent representations are concatenated and decoded to perform foreground segmentation. Experiments conducted on the challenging DAVIS 2016 dataset demonstrate that our guided representations not only outperform non-guided, but also recent and top-performing video object segmentation algorithms.
This paper investigates how to realize better and more efficient embedding learning to tackle the semi-supervised video object segmentation under challenging multi-object scenarios. The state-of-the-art methods learn to decode features with a single positive object and thus have to match and segment each target separately under multi-object scenarios, consuming multiple times computing resources. To solve the problem, we propose an Associating Objects with Transformers (AOT) approach to match and decode multiple objects uniformly. In detail, AOT employs an identification mechanism to associate multiple targets into the same high-dimensional embedding space. Thus, we can simultaneously process the matching and segmentation decoding of multiple objects as efficiently as processing a single object. For sufficiently modeling multi-object association, a Long Short-Term Transformer is designed for constructing hierarchical matching and propagation. We conduct extensive experiments on both multi-object and single-object benchmarks to examine AOT variant networks with different complexities. Particularly, our AOT-L outperforms all the state-of-the-art competitors on three popular benchmarks, i.e., YouTube-VOS (83.7% J&F), DAVIS 2017 (83.0%), and DAVIS 2016 (91.0%), while keeping more than 3X faster multi-object run-time. Meanwhile, our AOT-T can maintain real-time multi-object speed on the above benchmarks. We ranked 1st in the 3rd Large-scale Video Object Segmentation Challenge. The code will be publicly available at https://github.com/z-x-yang/AOT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا