ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Functional Principal Component Analysis via Functional Pairwise Spatial Signs

105   0   0.0 ( 0 )
 نشر من قبل Guangxing Wang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Functional principal component analysis (FPCA) has been widely used to capture major modes of variation and reduce dimensions in functional data analysis. However, standard FPCA based on the sample covariance estimator does not work well in the presence of outliers. To address this challenge, a new robust functional principal component analysis approach based on the functional pairwise spatial sign (PASS) operator, termed PASS FPCA, is introduced where we propose estimation procedures for both eigenfunctions and eigenvalues with and without measurement error. Compared to existing robust FPCA methods, the proposed one requires weaker distributional assumptions to conserve the eigenspace of the covariance function. In particular, a class of distributions called the weakly functional coordinate symmetric (weakly FCS) is introduced that allows for severe asymmetry and is strictly larger than the functional elliptical distribution class, the latter of which has been well used in the robust statistics literature. The robustness of the PASS FPCA is demonstrated via simulation studies and analyses of accelerometry data from a large-scale epidemiological study of physical activity on older women that partly motivates this work.



قيم البحث

اقرأ أيضاً

Functional principal component analysis is essential in functional data analysis, but the inferences will become unconvincing when some non-Gaussian characteristics occur, such as heavy tail and skewness. The focus of this paper is to develop a robus t functional principal component analysis methodology in dealing with non-Gaussian longitudinal data, for which sparsity and irregularity along with non-negligible measurement errors must be considered. We introduce a Kendalls $tau$ function whose particular properties make it a nice proxy for the covariance function in the eigenequation when handling non-Gaussian cases. Moreover, the estimation procedure is presented and the asymptotic theory is also established. We further demonstrate the superiority and robustness of our method through simulation studies and apply the method to the longitudinal CD4 cell count data in an AIDS study.
154 - Haozhe Zhang , Yehua Li 2020
We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independe nt functional nugget effect. Observations on each function are made on discrete time points and contaminated with measurement errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor product spline estimator for the spatio-temporal covariance function. When a coregionalization covariance structure is further assumed, we propose a new functional principal component analysis method that borrows information from neighboring functions. The proposed method also generates nonparametric estimators for the spatial covariance functions, which can be used for functional kriging. Under a unified framework for sparse and dense functional data, infill and increasing domain asymptotic paradigms, we develop the asymptotic convergence rates for the proposed estimators. Advantages of the proposed approach are demonstrated through simulation studies and two real data applications representing sparse and dense functional data, respectively.
Functional principal component analysis (FPCA) could become invalid when data involve non-Gaussian features. Therefore, we aim to develop a general FPCA method to adapt to such non-Gaussian cases. A Kenalls $tau$ function, which possesses identical e igenfunctions as covariance function, is constructed. The particular formulation of Kendalls $tau$ function makes it less insensitive to data distribution. We further apply it to the estimation of FPCA and study the corresponding asymptotic consistency. Moreover, the effectiveness of the proposed method is demonstrated through a comprehensive simulation study and an application to the physical activity data collected by a wearable accelerometer monitor.
Functional binary datasets occur frequently in real practice, whereas discrete characteristics of the data can bring challenges to model estimation. In this paper, we propose a sparse logistic functional principal component analysis (SLFPCA) method t o handle the functional binary data. The SLFPCA looks for local sparsity of the eigenfunctions to obtain convenience in interpretation. We formulate the problem through a penalized Bernoulli likelihood with both roughness penalty and sparseness penalty terms. An efficient algorithm is developed for the optimization of the penalized likelihood using majorization-minimization (MM) algorithm. The theoretical results indicate both consistency and sparsistency of the proposed method. We conduct a thorough numerical experiment to demonstrate the advantages of the SLFPCA approach. Our method is further applied to a physical activity dataset.
152 - Tomokazu Konishi 2012
Motivation: Although principal component analysis is frequently applied to reduce the dimensionality of matrix data, the method is sensitive to noise and bias and has difficulty with comparability and interpretation. These issues are addressed by imp roving the fidelity to the study design. Principal axes and the components for variables are found through the arrangement of the training data set, and the centers of data are found according to the design. By using both the axes and the center, components for an observation that belong to various studies can be separately estimated. Both of the components for variables and observations are scaled to a unit length, which enables relationships to be seen between them. Results: Analyses in transcriptome studies showed an improvement in the separation of experimental groups and in robustness to bias and noise. Unknown samples were appropriately classified on predetermined axes. These axes well reflected the study design, and this facilitated the interpretation. Together, the introduced concepts resulted in improved generality and objectivity in the analytical results, with the ability to locate hidden structures in the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا