ﻻ يوجد ملخص باللغة العربية
Gram-based and patch-based approaches are two important research lines of image style transfer. Recent diversified Gram-based methods have been able to produce multiple and diverse reasonable solutions for the same content and style inputs. However, as another popular research interest, the diversity of patch-based methods remains challenging due to the stereotyped style swapping process based on nearest patch matching. To resolve this dilemma, in this paper, we dive into the core style swapping process of patch-based style transfer and explore possible ways to diversify it. What stands out is an operation called shifted style normalization (SSN), the most effective and efficient way to empower existing patch-based methods to generate diverse results for arbitrary styles. The key insight is to use an important intuition that neural patches with higher activation values could contribute more to diversity. Theoretical analyses and extensive experiments are conducted to demonstrate the effectiveness of our method, and compared with other possible options and state-of-the-art algorithms, it shows remarkable superiority in both diversity and efficiency.
Arbitrary style transfer aims to synthesize a content image with the style of an image to create a third image that has never been seen before. Recent arbitrary style transfer algorithms find it challenging to balance the content structure and the st
Artistic style transfer aims to transfer the style characteristics of one image onto another image while retaining its content. Existing approaches commonly leverage various normalization techniques, although these face limitations in adequately tran
Universal Neural Style Transfer (NST) methods are capable of performing style transfer of arbitrary styles in a style-agnostic manner via feature transforms in (almost) real-time. Even though their unimodal parametric style modeling approach has been
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on an arbitrary style image. In this task the content-style feature transformation is a critical component for a proper fusion of features. Existin
This paper presents ImagineNet, a tool that uses a novel neural style transfer model to enable end-users and app developers to restyle GUIs using an image of their choice. Former neural style transfer techniques are inadequate for this application be