Quantifying Feedback from Narrow Line Region Outflows in Nearby Active Galaxies. III. Results for the Seyfert 2 Galaxies Markarian 3, Markarian 78, and NGC 1068


الملخص بالإنكليزية

Outflows of ionized gas driven by active galactic nuclei (AGN) may significantly impact the evolution of their host galaxies. However, determining the energetics of these outflows is difficult with spatially unresolved observations that are subject to strong global selection effects. We present part of an ongoing study using Hubble Space Telescope (HST) and Apache Point Observatory (APO) spectroscopy and imaging to derive spatially-resolved mass outflow rates and energetics for narrow line region (NLR) outflows in nearby AGN that are based on multi-component photoionization models to account for spatial variations in the gas ionization, density, abundances, and dust content. This expanded analysis adds Mrk 3, Mrk 78, and NGC 1068, doubling the sample in Revalski (2019). We find that the outflows contain total ionized gas masses of $M approx 10^{5.5} - 10^{7.5}$ $M_{odot}$ and reach peak velocities of $v approx 800 - 2000$ km s$^{-1}$. The outflows reach maximum mass outflow rates of $dot M_{out} approx 3 - 12$ $M_{odot}$ yr$^{-1}$ and encompass total kinetic energies of $E approx 10^{54} - 10^{56}$ erg. The outflows extend to radial distances of $r approx 0.1 - 3$ kpc from the nucleus, with the gas masses, outflow energetics, and radial extents positively correlated with AGN luminosity. The outflow rates are consistent with in-situ ionization and acceleration where gas is radiatively driven at multiple radii. These radial variations indicate that spatially-resolved observations are essential for localizing AGN feedback and determining the most accurate outflow parameters.

تحميل البحث