ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dynamics from a constrained magnetic Tight-Binding model

159   0   0.0 ( 0 )
 نشر من قبل Ramon Cardias
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A dynamics of the precession of coupled atomic moments in the tight-binding (TB) approximation is presented. By implementing an angular penalty functional in the energy that captures the magnetic effective fields self-consistently, the motion of the orientation of the local magnetic moments is observed faster than the variation of their magnitudes. This allows the computation of the effective atomic magnetic fields that are found consistent with the Heisenbergs exchange interaction, by comparison with classical atomistic spin dynamics on Fe, Co and Ni magnetic clusters.



قيم البحث

اقرأ أيضاً

We present a Mathematica program package MagneticTB, which can generate the tight-binding model for arbitrary magnetic space group. The only input parameters in MagneticTB are the (magnetic) space group number and the orbital information in each Wyck off positions. Some useful functions including getting the matrix expression for symmetry operators, manipulating the energy band structure by parameters and interfacing with other software are also developed. MagneticTB can help to investigate the physical properties in both magnetic and non-magnetic system, especially for topological properties.
222 - M. D. Jones , R. C. Albers 2008
We extend a tight-binding method to include the effects of spin-orbit coupling, and apply it to the study of the electronic properties of the actinide elements Th, U, and Pu. These tight-binding parameters are determined for the fcc crystal structure using the equivalent equilibrium volumes. In terms of the single particle energies and the electronic density of states, the overall quality of the tight-binding representation is excellent and of the same quality as without spin-orbit coupling. The values of the optimized tight-binding spin-orbit coupling parameters are comparable to those determined from purely atomic calculations.
We consider the mapping of tight-binding electronic structure theory to a local spin Hamiltonian, based on the adiabatic approximation for spin degrees of freedom in itinerant-electron systems. Local spin Hamiltonians are introduced in order to descr ibe the energy landscape of small magnetic fluctuations, locally around a given spin configuration. They are designed for linear response near a given magnetic state and in general insufficient to capture arbitrarily strong deviations of spin configurations from the equilibrium. In order to achieve this mapping, we include a linear term in the local spin Hamiltonian that, together with the usual bilinear exchange tensor, produces an improved accuracy of effective magnetic Weiss fields for non-collinear states. We also provide examples from tight-binding electronic structure theory, where our implementation of the calculation of exchange constants is based on constraining fields that stabilize an out-of-equilibrium spin configuration. We check our formalism by means of numerical calculations for iron dimers and chains.
We present the spin and orbitally resolved local density of states (LDOS) for a single Mn impurity and for two nearby Mn impurities in GaAs. The GaAs host is described by a sp^3 tight-binding Hamiltonian, and the Mn impurity is described by a local p -d hybridization and on-site potential. Local spin-polarized resonances within the valence bands significantly enhance the LDOS near the band edge. For two nearby parallel Mn moments the acceptor states hybridize and split in energy. Thus scanning tunneling spectroscopy can directly measure the Mn-Mn interaction as a function of distance.
For a previously published study of the titanium hcp (alpha) to omega (omega) transformation, a tight-binding model was developed for titanium that accurately reproduces the structural energies and electron eigenvalues from all-electron density-funct ional calculations. We use a fitting method that matches the correctly symmetrized wavefuctions of the tight-binding model to those of the density-functional calculations at high symmetry points. The structural energies, elastic constants, phonon spectra, and point-defect energies predicted by our tight-binding model agree with density-functional calculations and experiment. In addition, a modification to the functional form is implemented to overcome the collapse problem of tight-binding, necessary for phase transformation studies and molecular dynamics simulations. The accuracy, transferability and efficiency of the model makes it particularly well suited to understanding structural transformations in titanium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا