ﻻ يوجد ملخص باللغة العربية
Using detailed synchrotron diffraction, magnetization, thermodynamic and transport measurements, we investigate the relationship between the mixed valence of Ir, lattice strain and the resultant structural and magnetic ground states in the geometrically frustrated triple perovskite iridate Ba$_{3}$NaIr$_{2}$O$_{9}$. We observe a complex interplay between lattice strain and structural phase co-existence, which is in sharp contrast to what is typically observed in this family of compounds. The low temperature magnetic ground state is characterized by the absence of long range order, and points towards the condensation of a cluster glass state from an extended regime of short range magnetic correlations.
Using thermodynamic measurements, neutron diffraction, nuclear magnetic resonance, and muon spin relaxation, we establish putative quantum spin-liquid behavior in Ba$_3$InIr$_2$O$_9$, where unpaired electrons are localized on mixed-valence Ir$_2$O$_9
The anomalous thermal expansion in a layered 3$d$-5$d$ based triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$ is investigated using high resolution synchrotron diffraction. Below the magneto-structural transition at 107,K, the onset of antiferroma
We report a comprehensive investigation of the triple perovskite iridate Ba$_{3}$CoIr$_{2}$O$_{9}$. Stabilizing in the hexagonal $P6_{3}/mmc$ symmetry at room temperature, this system transforms to a monoclinic $C2/c$ symmetry at the magnetic phase t
We present the muon spin relaxation/rotation spectra in the multiferroic compound (Cu,Zn)$_{3}$Mo$_{2}$O$_{9}$. The parent material Cu$_{3}$Mo$_{2}$O$_{9}$ has a multiferroic phase below $T_{rm N}$ = 8.0 K, where the canted antiferromagnetism and the
We report on thermodynamic, magnetization, and muon spin relaxation measurements of the strong spin-orbit coupled iridate Ba$_3$IrTi$_2$O$_9$, which constitutes a new frustration motif made up a mixture of edge- and corner-sharing triangles. In spite