ﻻ يوجد ملخص باللغة العربية
Strong accretion shocks are expected to illuminate the warm-hot inter-galactic medium encompassed by the filaments of the cosmic web, through synchrotron radio emission. Given their high sensitivity, low-frequency large radio facilities may already be able to detect signatures of this extended radio emission from the region in between two close and massive galaxy clusters. In this work we exploit the non-detection of such diffuse emission by deep observations of two pairs of relatively close ($simeq 10$ Mpc) and massive ($M_{500}geq 10^{14}M_odot$) galaxy clusters using the LOw-Frequency ARray (LOFAR). By combining the results from the two putative inter-cluster filaments, we derive new independent constraints on the median strength of inter-galactic magnetic fields: $B_{rm 10 Mpc}< 2.5times 10^2,rm nG,(95%, rm CL)$. Based on cosmological simulations and assuming a primordial origin of the B-fields, these estimates can be used to limit the amplitude of primordial seed magnetic fields: $B_0leq10,rm nG$. We advise the observation of similar cluster pairs as a powerful tool to set tight constraints on the amplitude of extragalactic magnetic fields.
Measuring the properties of extragalactic magnetic fields through the effect of Faraday rotation provides a means to understand the origin and evolution of cosmic magnetism. Here we use data from the LOFAR Two-Metre Sky Survey (LoTSS) to calculate th
We present a search for the synchrotron emission from the synchrotron cosmic web by cross correlating 180MHz radio images from the Murchison Widefield Array with tracers of large scale structure (LSS). We use t
We studied physical properties of matter in 24,544 filaments ranging from 30 to 100 Mpc in length, identified in the Sloan Digital Sky Survey (SDSS). We stacked the Comptonization y map produced by the Planck Collaboration around the filaments, exclu
Observations of the cosmic microwave background indicate that baryons account for 5% of the Universes total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simula
Understanding cosmic reionization requires the identification and characterization of early sources of hydrogen-ionizing photons. The 2012 Hubble Ultra Deep Field (UDF12) campaign has acquired the deepest infrared images with the Wide Field Camera 3