ﻻ يوجد ملخص باللغة العربية
Reinforcement learning (RL) for network slicing is considered in the 5G radio access network, where the base station, gNodeB, allocates resource blocks (RBs) to the requests of user equipments and maximizes the total reward of accepted requests over time. Based on adversarial machine learning, a novel over-the-air attack is introduced to manipulate the RL algorithm and disrupt 5G network slicing. Subject to an energy budget, the adversary observes the spectrum and builds its own RL-based surrogate model that selects which RBs to jam with the objective of maximizing the number of failed network slicing requests due to jammed RBs. By jamming the RBs, the adversary reduces the RL algorithms reward. As this reward is used as the input to update the RL algorithm, the performance does not recover even after the adversary stops jamming. This attack is evaluated in terms of the recovery time and the (maximum and total) reward loss, and it is shown to be much more effective than benchmark (random and myopic) jamming attacks. Different reactive and proactive defense mechanisms (protecting the RL algorithms updates or misleading the adversarys learning process) are introduced to show that it is viable to defend 5G network slicing against this attack.
The paper presents a reinforcement learning solution to dynamic resource allocation for 5G radio access network slicing. Available communication resources (frequency-time blocks and transmit powers) and computational resources (processor usage) are a
We demonstrate how the 5G network slicing model can be extended to address data security requirements. In this work we demonstrate two different slice configurations, with different encryption requirements, representing two diverse use-cases for 5G n
Network slicing is born as an emerging business to operators, by allowing them to sell the customized slices to various tenants at different prices. In order to provide better-performing and cost-efficient services, network slicing involves challengi
Radio access network (RAN) slicing is an important part of network slicing in 5G. The evolving network architecture requires the orchestration of multiple network resources such as radio and cache resources. In recent years, machine learning (ML) tec
Adversarial training provides a principled approach for training robust neural networks. From an optimization perspective, adversarial training is essentially solving a bilevel optimization problem. The leader problem is trying to learn a robust clas