ترغب بنشر مسار تعليمي؟ اضغط هنا

New Identity on Parseval p-Approximate Schauder Frames and Applications

82   0   0.0 ( 0 )
 نشر من قبل P Sam Johnson
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A very useful identity for Parseval frames for Hilbert spaces was obtained by Balan, Casazza, Edidin, and Kutyniok. In this paper, we obtain a similar identity for Parseval p-approximate Schauder frames for Banach spaces which admits a homogeneous semi-inner product in the sense of Lumer-Giles.



قيم البحث

اقرأ أيضاً

Paley-Wiener theorem for frames for Hilbert spaces, Banach frames, Schauder frames and atomic decompositions for Banach spaces are known. In this paper, we derive Paley-Wiener theorem for p-approximate Schauder frames for separable Banach spaces. We show that our results give Paley-Wiener theorem for frames for Hilbert spaces.
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $mathcal{H}_1$ which co ntains $mathcal{H}$ isometrically. In this paper, we derive dilation result for p-approximate Schauder frames for separable Banach spaces. Our result contains Naimark-Han-Larson dilation theorem as a particular case.
It is known in Hilbert space frame theory that a Bessel sequence can be expanded to a frame. Contrary to Hilbert space situation, using a result of Casazza and Christensen, we show that there are Banach spaces and approximate Bessel sequences which c an not be expanded to approximate Schauder frames. We characterize Banach spaces in which one can expand approximate Bessel sequences to approximate Schauder frames.
158 - G.Corach , P. Massey , M.Ruiz 2013
Parseval frames have particularly useful properties, and in some cases, they can be used to reconstruct signals which were analyzed by a non-Parseval frame. In this paper, we completely describe the degree to which such reconstruction is feasible. In deed, notice that for fixed frames $cF$ and $cX$ with synthesis operators $F$ and $X$, the operator norm of $FX^*-I$ measures the (normalized) worst-case error in the reconstruction of vectors when analyzed with $cX$ and synthesized with $cF$. Hence, for any given frame $cF$, we compute explicitly the infimum of the operator norms of $FX^*-I$, where $cX$ is any Parseval frame. The $cX$s that minimize this quantity are called Parseval quasi-dual frames of $cF$. Our treatment considers both finite and infinite Parseval quasi-dual frames.
159 - Emily J. King 2012
Wavelet set wavelets were the first examples of wavelets that may not have associated multiresolution analyses. Furthermore, they provided examples of complete orthonormal wavelet systems in $L^2(mathbb{R}^d)$ which only require a single generating w avelet. Although work had been done to smooth these wavelets, which are by definition discontinuous on the frequency domain, nothing had been explicitly done over $mathbb{R}^d$, $d >1$. This paper, along with another one cowritten by the author, finally addresses this issue. Smoothing does not work as expected in higher dimensions. For example, Bin Hans proof of existence of Schwartz class functions which are Parseval frame wavelets and approximate Parseval frame wavelet set wavelets does not easily generalize to higher dimensions. However, a construction of wavelet sets in $hat{mathbb{R}}^d$ which may be smoothed is presented. Finally, it is shown that a commonly used class of functions cannot be the result of convolutional smoothing of a wavelet set wavelet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا