Quantum logic synthesis for Satisfiability Problems


الملخص بالإنكليزية

To demonstrate the advantage of quantum computation, many attempts have been made to attack classically intractable problems, such as the satisfiability problem (SAT), with quantum computer. To use quantum algorithms to solve these NP-hard problems, a quantum oracle with quantum circuit implementation is usually required. In this manuscript, we first introduce a novel algorithm to synthesize quantum logic in the Conjunctive Normal Form (CNF) model. Compared with linear ancillary qubits in the implementation of Qiskit open-source framework, our algorithm can synthesize an m clauses n variables k-CNF with $O(k^2 m^2/n)$ quantum gates by only using three ancillary qubits. Both the size and depth of the circuit can be further compressed with the increase in the number of ancillary qubits. When the number of ancillary qubits is $Omega(m^epsilon)$ (for any $epsilon > 0$), the size of the quantum circuit given by the algorithm is O(km), which is asymptotically optimal. Furthermore, we design another algorithm to optimize the depth of the quantum circuit with only a small increase in the size of the quantum circuit. Experiments show that our algorithms have great improvement in size and depth compared with the previous algorithms.

تحميل البحث