ﻻ يوجد ملخص باللغة العربية
Convolutional neural network (CNN) based architectures, such as Mask R-CNN, constitute the state of the art in object detection and segmentation. Recently, these methods have been extended for model-based segmentation where the network outputs the parameters of a geometric model (e.g. an ellipse) directly. This work considers objects whose three-dimensional models can be represented as ellipsoids. We present a variant of Mask R-CNN for estimating the parameters of ellipsoidal objects by segmenting each object and accurately regressing the parameters of projection ellipses. We show that model regression is sensitive to the underlying occlusion scenario and that prediction quality for each object needs to be characterized individually for accurate 3D object estimation. We present a novel ellipse regression loss which can learn the offset parameters with their uncertainties and quantify the overall geometric quality of detection for each ellipse. These values, in turn, allow us to fuse multi-view detections to obtain 3D ellipsoid parameters in a principled fashion. The experiments on both synthetic and real datasets quantitatively demonstrate the high accuracy of our proposed method in estimating 3D objects under heavy occlusions compared to previous state-of-the-art methods.
In this paper, we address the problem of estimating dense depth from a sequence of images using deep neural networks. Specifically, we employ a dense-optical-flow network to compute correspondences and then triangulate the point cloud to obtain an in
In this paper, we address the problem of reconstructing an objects surface from a single image using generative networks. First, we represent a 3D surface with an aggregation of dense point clouds from multiple views. Each point cloud is embedded in
Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some di
Tracking of objects in 3D is a fundamental task in computer vision that finds use in a wide range of applications such as autonomous driving, robotics or augmented reality. Most recent approaches for 3D multi object tracking (MOT) from LIDAR use obje
Estimating 3D hand poses from a single RGB image is challenging because depth ambiguity leads the problem ill-posed. Training hand pose estimators with 3D hand mesh annotations and multi-view images often results in significant performance gains. How