ﻻ يوجد ملخص باللغة العربية
Very long base interferometry (VLBI) radio images recently proved to be essential in breaking the degeneracy in the ejecta model for the neutron star merger event GW170817. We discuss the properties of synthetic radio images of merger jet afterglow by using semi-analytic models of laterally spreading or non-spreading jets. The image centroid initially moves away from the explosion point in the sky with an apparent superlumianal velocity. After reaching a maximum displacement its motion is reversed. This behavior is in line with that found in full hydrodynamics simulations. Since the evolution of the centroid shift and jet image size are significantly different in the two jet models, observations of these characteristics for very bright events might be able to confirm or constrain the lateral expansion law of merger jets. We explicitly demonstrate how $theta_{rm obs}$ is obtained by the centroid shift of radio images or its apparent velocity provided the ratio of the jet core size $theta_{c}$ and the viewing angle $theta_{rm obs}$ is determined by afterglow light curves. We show that a simple method based on a point-source approximation provides reasonable angular estimates ($10-20%$ errors at most). By taking a sample of structured Gaussian jet results, we find that the model with $theta_{rm obs} sim 0.32$ rad can explain the main features of the GW170817 afterglow light curves and the radio images.
Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40
VLBI and JVLA observations revealed that GW170817 involved a narrow jet ($ theta_j approx 4^circ $) that dominated the afterglow peak at our viewing angle, $ theta_{rm obs} approx 20^circ $. This implies that at the time of the afterglow peak, the ob
Jets can become collimated as they propagate through dense environments and understanding such interactions is crucial for linking physical models of the environments to observations. In this work, we use 3D special-relativistic simulations to study
The LIGO/Virgo Consortium (LVC) released a preliminary announcement of a candidate gravitational wave signal, S190426c, that could have arisen from a black hole-neutron star merger. As the first such candidate system, its properties such as masses an
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remn