ﻻ يوجد ملخص باللغة العربية
We present a practically efficient algorithm for maintaining a global minimum cut in large dynamic graphs under both edge insertions and deletions. While there has been theoretical work on this problem, our algorithm is the first implementation of a fully-dynamic algorithm. The algorithm uses the theoretical foundation and combines it with efficient and finely-tuned implementations to give an algorithm that can maintain the global minimum cut of a graph with rapid update times. We show that our algorithm gives up to multiple orders of magnitude speedup compared to static approaches both on edge insertions and deletions.
In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented
Maintaining maximal independent set in dynamic graph is a fundamental open problem in graph theory and the first sublinear time deterministic algorithm was came up by Assadi, Onak, Schieber and Solomon(STOC18), which achieves $O(m^{3/4})$ amortized u
In this work, we resolve the query complexity of global minimum cut problem for a graph by designing a randomized algorithm for approximating the size of minimum cut in a graph, where the graph can be accessed through local queries like {sc Degree},
Consider the following 2-respecting min-cut problem. Given a weighted graph $G$ and its spanning tree $T$, find the minimum cut among the cuts that contain at most two edges in $T$. This problem is an important subroutine in Kargers celebrated random
Given a graph $G=(V,E)$ with two distinguished vertices $s,tin V$ and an integer parameter $L>0$, an {em $L$-bounded cut} is a subset $F$ of edges (vertices) such that the every path between $s$ and $t$ in $Gsetminus F$ has length more than $L$. The