ﻻ يوجد ملخص باللغة العربية
We present a two-step method specifically tailored for band structure calculation of the small-angle moir{e}-pattern materials which contain tens of thousands of atoms in a unit cell. In the first step, the self-consistent field calculation for ground state is performed with $O(N)$ Krylov subspace method implemented in OpenMX. Secondly, the crystal momentum dependent Bloch Hamiltonian and overlap matrix are constructed from the results obtained in the first step and only a small number of eigenvalues near the Fermi energy are solved with shift-invert and Lanczos techniques. By systematically tuning two key parameters, the cutoff radius for electron hopping interaction and the dimension of Krylov subspace, we obtained the band structures for both rigid and corrugated twisted bilayer graphene structures at the first magic angle ($theta=1.08^circ$) and other three larger ones with satisfied accuracy on affordable costs. The band structures are in good agreement with those from tight binding models, continuum models, plane-wave pseudo-potential based $ab~initio$ calculations, and the experimental observations. This efficient two-step method is to play a crucial role in other twisted two-dimensional materials, where the band structures are much more complex than graphene and the effective model is hard to be constructed.
Using an Environmentally Friendly Renormalization Group we derive an ab initio universal scaling form for the equation of state for the O(N) model, y=f(x), that exhibits all required analyticity properties in the limits $xto 0$, $xtoinfty$ and $xto -
The s manifold energy levels for phosphorus donors in silicon are important input parameters for the design and modelling of electronic devices on the nanoscale. In this paper we calculate these energy levels from first principles using density funct
The two-body knock-out reaction 4He(e,ed)d is calculated at various momentum transfers. The full four-nucleon dynamics is taken into account microscopically both in the initial and the final states. As NN interaction the central MT-I/III potential is
The broken inversion symmetry at the surface of a metallic film (or, more generally, at the interface between a metallic film and a different metallic or insulating material) greatly amplifies the influence of the spin-orbit interaction on the surfac
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, d