ﻻ يوجد ملخص باللغة العربية
Weakly Interacting Massive Particles (WIMPs) are considered to be one of the favoured dark matter candidates. Searching for any detectable signal due to the annihilation and decay of WIMPs over the entire electromagnetic spectrum has become a matter of interest for the last few decades. WIMP annihilation to Standard Model particles gives rise to a possibility of detection of this signal at low radio frequencies via synchrotron radiation. Dwarf Spheroidal Galaxies (dSphs) are expected to contain a huge amount of dark matter which makes them promising targets to search for such large scale diffuse radio emission. In this work, we present a stacking analysis of 23 dSph galaxies observed at low frequency (147.5MHz) as part of the TIFR-GMRT Sky Survey (TGSS). The non-detection of any signal from these stacking exercises put very tight constraints on the dark matter parameters. The best limit comes from the novel method of stacking after scaling the radio images of the individual dSph galaxy fields after scaling them by the respective half-light radius. The constraint on the thermally averaged cross-section is below the thermal relic cross-section value over a range of WIMP mass for reasonable choices of relevant astrophysical parameters. Such analysis using future deeper observation of individual targets as well as stacking can potentially reveal more about the WIMP dark matter properties.
We present the first observational limits on the predicted synchrotron signals from particle Dark Matter annihilation models in dwarf spheroidal galaxies at radio frequencies below 1 GHz. We use a combination of survey data from the Murchison Widefie
Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to d
Fermi-LAT observations have strongly constrained dark matter annihilation through the joint-likelihood analysis of dwarf spheroidal galaxies (dSphs). These constraints are expected to be robust because dSphs have measurable dark matter content and pr
We present a general, model-independent formalism for determining bounds on the production of photons in dwarf spheroidal galaxies via dark matter annihilation, applicable to any set of assumptions about dark matter particle physics or astrophysics.
Dwarf spheroidal galaxies of the Local Group are close satellites of the Milky Way characterized by a large mass-to-light ratio and are not expected to be the site of non-thermal high-energy gamma-ray emission or intense star formation. Therefore the