ﻻ يوجد ملخص باللغة العربية
Aims. We present MCFOST-art, a new non-local thermodynamic equilibrium radiative transfer solver for multilevel atomic systems. The code is embedded in the 3D radiative transfer code MCFOST and is compatible with most of the MCFOST modules. The code is versatile and designed to model the close environment of stars in 3D. Methods. The code solves for the statistical equilibrium and radiative transfer equations using the Multilevel Accelerated Lambda Iteration (MALI) method. We tested MCFOST-art on spherically symmetric models of stellar photospheres as well as on a standard model of the solar atmosphere. We computed atomic level populations and outgoing fluxes and compared these values with the results of the TURBOspectrum and RH codes. Calculations including expansion and rotation of the atmosphere were also performed. We tested both the pure local thermodynamic equilibrium and the out-of-equilibrium problems. Results. In all cases, the results from all codes agree within a few percent at all wavelengths and reach the sub-percent level between RH and MCFOST-art. We still note a few marginal discrepancies between MCFOST-art and TURBOspectrum as a result of different treatments of background opacities at some critical wavelength ranges.
Current observational data of exoplanets are providing increasing detail of their 3D atmospheric structures. As characterisation efforts expand in scope, the need to develop consistent 3D radiative-transfer methods becomes more pertinent as the compl
EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field qu
The emergence of three-dimensional magneto-hydrodynamic (MHD) simulations of stellar atmospheres has sparked a need for efficient radiative transfer codes to calculate detailed synthetic spectra. We present RH 1.5D, a massively parallel code based on
Radiative transfer modelling is part of many astrophysical simulations and is used to make synthetic observations and to assist analysis of observations. We concentrate on the modelling of the radio lines emitted by the interstellar medium. In connec
(Abridged) Context. Massive stars form in magnetized and turbulent environments, and are often located in stellar clusters. Their accretion mechanism, as well as the origin of their systems stellar multiplicity are poorly understood. Aims. We study t