ترغب بنشر مسار تعليمي؟ اضغط هنا

Survival of the strictest: Stable and unstable equilibria under regularized learning with partial information

59   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we examine the Nash equilibrium convergence properties of no-regret learning in general N-player games. For concreteness, we focus on the archetypal follow the regularized leader (FTRL) family of algorithms, and we consider the full spectrum of uncertainty that the players may encounter - from noisy, oracle-based feedback, to bandit, payoff-based information. In this general context, we establish a comprehensive equivalence between the stability of a Nash equilibrium and its support: a Nash equilibrium is stable and attracting with arbitrarily high probability if and only if it is strict (i.e., each equilibrium strategy has a unique best response). This equivalence extends existing continuous-ti



قيم البحث

اقرأ أيضاً

Regularized learning is a fundamental technique in online optimization, machine learning and many other fields of computer science. A natural question that arises in these settings is how regularized learning algorithms behave when faced against each other. We study a natural formulation of this problem by coupling regularized learning dynamics in zero-sum games. We show that the systems behavior is Poincare recurrent, implying that almost every trajectory revisits any (arbitrarily small) neighborhood of its starting point infinitely often. This cycling behavior is robust to the agents choice of regularization mechanism (each agent could be using a different regularizer), to positive-affine transformations of the agents utilities, and it also persists in the case of networked competition, i.e., for zero-sum polymatrix games.
Equilibrium computation in markets usually considers settings where player valuation functions are known. We consider the setting where player valuations are unknown; using a PAC learning-theoretic framework, we analyze some classes of common valuati on functions, and provide algorithms which output direct PAC equilibrium allocations, not estimates based on attempting to learn valuation functions. Since there exist trivial PAC market outcomes with an unbounded worst-case efficiency loss, we lower-bound the efficiency of our algorithms. While the efficiency loss under general distributions is rather high, we show that in some cases (e.g., unit-demand valuations), it is possible to find a PAC market equilibrium with significantly better utility.
We consider an example of stochastic games with partial, asymmetric and non-classical information. We obtain relevant equilibrium policies using a new approach which allows managing the belief updates in a structured manner. Agents have access only t o partial information updates, and our approach is to consider optimal open loop control until the information update. The agents continuously control the rates of their Poisson search clocks to acquire the locks, the agent to get all the locks before others would get reward one. However, the agents have no information about the acquisition status of others and will incur a cost proportional to their rate process. We solved the problem for the case with two agents and two locks and conjectured the results for $N$-agents. We showed that a pair of (partial) state-dependent time-threshold policies form a Nash equilibrium.
Understanding the behavior of no-regret dynamics in general $N$-player games is a fundamental question in online learning and game theory. A folk result in the field states that, in finite games, the empirical frequency of play under no-regret learni ng converges to the games set of coarse correlated equilibria. By contrast, our understanding of how the day-to-day behavior of the dynamics correlates to the games Nash equilibria is much more limited, and only partial results are known for certain classes of games (such as zero-sum or congestion games). In this paper, we study the dynamics of follow-the-regularized-leader (FTRL), arguably the most well-studied class of no-regret dynamics, and we establish a sweeping negative result showing that the notion of mixed Nash equilibrium is antithetical to no-regret learning. Specifically, we show that any Nash equilibrium which is not strict (in that every player has a unique best response) cannot be stable and attracting under the dynamics of FTRL. This result has significant implications for predicting the outcome of a learning process as it shows unequivocally that only strict (and hence, pure) Nash equilibria can emerge as stable limit points thereof.
Recent renewed interest in multi-agent reinforcement learning (MARL) has generated an impressive array of techniques that leverage deep reinforcement learning, primarily actor-critic architectures, and can be applied to a limited range of settings in terms of observability and communication. However, a continuing limitation of much of this work is the curse of dimensionality when it comes to representations based on joint actions, which grow exponentially with the number of agents. In this paper, we squarely focus on this challenge of scalability. We apply the key insight of action anonymity, which leads to permutation invariance of joint actions, to two recently presented deep MARL algorithms, MADDPG and IA2C, and compare these instantiations to another recent technique that leverages action anonymity, viz., mean-field MARL. We show that our instantiations can learn the optimal behavior in a broader class of agent networks than the mean-field method, using a recently introduced pragmatic domain.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا